A Granular Computing Methodology to Improve Record Quality for Master Data Management
提高主数据管理记录质量的精细计算方法
基本信息
- 批准号:462980-2014
- 负责人:
- 金额:$ 11.01万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Strategic Projects - Group
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Master Data Management (MDM) is a corporate process that ensures the accuracy, uniformity, proper stewardship, privacy, semantic consistency, and accountability of a company's master data assets. Master data is the consistent set of business identifiers and attributes that describe the core entities of a company. A key aspect of a company's MDM solution is the creation of a "golden record" for every client of interest. These golden records are linked, synchronized, and aggregated using sets of heterogeneous information across distributed data repositories. As storage costs decrease and big data technologies mature, companies can store more complex, voluminous, and varied (schematized, semi-structured, unstructured, social media, and so on) identifiers and attributes.
The automated creation of golden records presents seven significant challenges: (i) aggregating data acquired at varying levels of information specificity; (ii) compensating for incomplete or missing attribute values; (iii) attenuating the effects of imprecise or inaccurate data; (iv) minimizing the false positive rate, that is, avoid merging records belonging to different clients; (v) ensuring that records belonging to the same client are, in fact, merged, that is, minimizing the false negative rate; (vi) reducing the number of manual, end user, reconciliations; (vii) and reducing the number of ad hoc rules to deal with anomalies from the automated process.
In close collaboration with our industrial partner, InfoMagnetics Technologies Corporation, we propose to address the above challenges via the design and development of a Granular Computing Methodology for MDM in order to improve client record quality. We will employ novel aggregation techniques on data, with varying levels of information specificity and across disparate data repositories, in order to improve the overall quality of the assembled golden records.
主数据管理(MDM)是一个企业流程,可确保公司主数据资产的准确性、一致性、适当管理、隐私性、语义一致性和责任性。主数据是描述公司核心实体的一组一致的业务标识符和属性。公司MDM解决方案的一个关键方面是为每个感兴趣的客户创建“黄金记录”。这些黄金记录使用分布式数据存储库中的异构信息集进行链接、同步和聚合。随着存储成本的降低和大数据技术的成熟,公司可以存储更复杂、更庞大、更多样(模式化、半结构化、非结构化、社交媒体等)的标识符和属性。
黄金记录的自动创建提出了七个重大挑战:㈠汇总在不同信息具体程度上获得的数据; ㈡补偿不完整或缺失的属性值; ㈢减弱不精确或不准确数据的影响; ㈣尽量减少误报率,即避免合并属于不同客户的记录; ㈤确保属于同一客户的记录实际上已合并,即尽量减少假阴性率; ㈥减少最终用户手工核对的次数; ㈦减少处理自动化过程中出现的异常情况的临时规则的数量。
通过与我们的工业合作伙伴InfoMagnetics Technologies Corporation密切合作,我们建议通过为MDM设计和开发粒度计算方法来解决上述挑战,以提高客户记录质量。我们将采用新颖的数据聚合技术,具有不同级别的信息特异性和不同的数据存储库,以提高组装的黄金唱片的整体质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pedrycz, Witold其他文献
Selecting Discrete and Continuous Features Based on Neighborhood Decision Error Minimization
基于邻域决策误差最小化的离散和连续特征选择
- DOI:
10.1109/tsmcb.2009.2024166 - 发表时间:
2010-02-01 - 期刊:
- 影响因子:0
- 作者:
Hu, Qinghua;Pedrycz, Witold;Lang, Jun - 通讯作者:
Lang, Jun
Robust Multi-Linear Fuzzy SVR Designed With the Aid of Fuzzy C-Means Clustering Based on Insensitive Data Information
- DOI:
10.1109/access.2020.3030083 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:3.9
- 作者:
Wang, Zheng;Yang, Cheng;Pedrycz, Witold - 通讯作者:
Pedrycz, Witold
An efficient accelerator for attribute reduction from incomplete data in rough set framework
粗糙集框架中不完整数据属性约简的高效加速器
- DOI:
10.1016/j.patcog.2011.02.020 - 发表时间:
2011-08 - 期刊:
- 影响因子:8
- 作者:
Qian, Yuhua;Liang, Jiye;Pedrycz, Witold;Dang, Chuangyin - 通讯作者:
Dang, Chuangyin
Granular data imputation: A framework of Granular Computing
粒度数据插补:粒度计算框架
- DOI:
10.1016/j.asoc.2016.05.006 - 发表时间:
2016-09 - 期刊:
- 影响因子:8.7
- 作者:
Pedrycz, Witold;Wang, Dan;Li, Lina;Li, Zhiwu - 通讯作者:
Li, Zhiwu
Key Points Estimation and Point Instance Segmentation Approach for Lane Detection
- DOI:
10.1109/tits.2021.3088488 - 发表时间:
2021-06-18 - 期刊:
- 影响因子:8.5
- 作者:
Ko, Yeongmin;Lee, Younkwan;Pedrycz, Witold - 通讯作者:
Pedrycz, Witold
Pedrycz, Witold的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pedrycz, Witold', 18)}}的其他基金
Interpretable and explainable rule-based modeling: analysis, design, and evaluation in the framework of Granular Computing and federated learning
可解释和可解释的基于规则的建模:粒度计算和联邦学习框架中的分析、设计和评估
- 批准号:
RGPIN-2022-03045 - 财政年份:2022
- 资助金额:
$ 11.01万 - 项目类别:
Discovery Grants Program - Individual
Granular fuzzy models as a new paradigm of system modeling
粒度模糊模型作为系统建模的新范式
- 批准号:
42117-2013 - 财政年份:2019
- 资助金额:
$ 11.01万 - 项目类别:
Discovery Grants Program - Individual
A Granular Computing Methodology to Improve Record Quality for Master Data Management
提高主数据管理记录质量的精细计算方法
- 批准号:
462980-2014 - 财政年份:2017
- 资助金额:
$ 11.01万 - 项目类别:
Strategic Projects - Group
相似海外基金
Technology-Driven and Scalable Regression Methodology, Computing and Theory
技术驱动且可扩展的回归方法、计算和理论
- 批准号:
DP230101179 - 财政年份:2023
- 资助金额:
$ 11.01万 - 项目类别:
Discovery Projects
SHF: Small: A Design Automation Methodology for Flexible Real-Time Computing based on Split and Early Exit Neural Models
SHF:小型:基于分裂和早期退出神经模型的灵活实时计算的设计自动化方法
- 批准号:
2140154 - 财政年份:2022
- 资助金额:
$ 11.01万 - 项目类别:
Continuing Grant
Novel Design Methodology for Future Highly Power-efficient Approximate Communication Intensive Computing
未来高能效近似通信密集型计算的新颖设计方法
- 批准号:
21K17724 - 财政年份:2021
- 资助金额:
$ 11.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Circuit Design Methodology for Design Efficiency and Low Power Consumption on Approximate Computing
基于近似计算的设计效率和低功耗电路设计方法
- 批准号:
20K11737 - 财政年份:2020
- 资助金额:
$ 11.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Towards a methodology for prospective governance in quantum computing technologies
走向量子计算技术前瞻性治理的方法论
- 批准号:
2220046 - 财政年份:2019
- 资助金额:
$ 11.01万 - 项目类别:
Studentship
Design methodology of noise-driven logic circuits toward ultra-low-power computing systems
面向超低功耗计算系统的噪声驱动逻辑电路设计方法
- 批准号:
18H03302 - 财政年份:2018
- 资助金额:
$ 11.01万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Granular Computing Methodology to Improve Record Quality for Master Data Management
提高主数据管理记录质量的精细计算方法
- 批准号:
462980-2014 - 财政年份:2017
- 资助金额:
$ 11.01万 - 项目类别:
Strategic Projects - Group
Low-power approximate arithmetic circuits without sacrificing computing performance, and their development methodology
不牺牲计算性能的低功耗近似运算电路及其开发方法
- 批准号:
17K00088 - 财政年份:2017
- 资助金额:
$ 11.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SHF: Small: Greybox Computing: An Associative Computing Methodology with Instruction Directed Power and Clock Management
SHF:小型:灰盒计算:具有指令导向电源和时钟管理的关联计算方法
- 批准号:
1618065 - 财政年份:2016
- 资助金额:
$ 11.01万 - 项目类别:
Standard Grant
A Granular Computing Methodology to Improve Record Quality for Master Data Management
提高主数据管理记录质量的精细计算方法
- 批准号:
462980-2014 - 财政年份:2014
- 资助金额:
$ 11.01万 - 项目类别:
Strategic Projects - Group