Auto-Adaptive Systems for Monitoring and Updating Dynamic Knowledge Graphs

用于监控和更新动态知识图的自适应系统

基本信息

  • 批准号:
    483298-2015
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Given the extraordinary volumes of fast moving data on the Internet, users need cognitive services to help them make complex decisions based on the best available knowledge. In addition, these services should continually acquire new knowledge from the data fed into the system by mining data for information. The cognitive ability of a electronic commerce system relies on its global dynamic ontology which can be represented by dynamic knowledge graphs. In this research project, we propose a multi-agent system for effectively monitoring and updating large dynamic knowledge graphs of a semantic eCommerce search engine "daneel", which has been developed by Azzimov Inc. The proposed system will be used as an algorithmic tool to categorize eCommerce servers of Azzimov's interest on the Internet and optimize the graph for efficient search. One of the challenges in building such a tool is to calculate the chromatic number of a large scale, dynamic graph in a near real time manner. While calculating chromatic number of a graph is a combinatorial optimization problem that has been well studied in graph theory, however, existing approaches do not satisfy Azzimov's requirement of computing chromatic numbers of very large graphs with near real time responsiveness in a distributed and dynamic environment, such as the Internet. With the proposed multi-agent system for computing chromatic numbers, Azzimov's cognitive service system can monitor and updates its dynamic knowledge graphs with better speed and accuracy which enables better search results. The multi-agent system is designed based on the Auto-Adaptive Systems (AAS) architecture. The design of decision making modules of the agents and the interaction protocol between them are based on a distributed graph colouring algorithm which will also be developed in this project.
鉴于互联网上快速移动的数据量巨大,用户需要认知服务来帮助他们 他们根据现有的最佳知识作出复杂的决定。此外,这些服务应 通过从数据中挖掘信息,不断从输入系统的数据中获取新知识。的 电子商务系统的认知能力依赖于其全局动态本体, 由动态知识图表示。 在本研究计划中,我们提出一个多代理系统,以有效地监测和更新大型动态 Azzimov开发的语义电子商务搜索引擎“daneel”的知识图 Inc.拟议的系统将被用作算法工具来分类Azzimov的电子商务服务器 在互联网上的兴趣,并优化高效搜索的图形。构建这样一个工具的挑战之一是 是以接近真实的时间的方式计算大规模动态图的色数。而 计算图的色数是一个组合优化问题, 然而,现有的方法不能满足Azzimov的计算色的要求, 在分布式和动态环境中具有接近真实的时间响应性的大量非常大的图, 比如互联网。 利用所提出的用于计算色数的多代理系统,Azzimov的认知服务系统 能够以更快的速度和准确性监控和更新其动态知识图, 搜索结果基于自适应系统(AAS)体系结构设计了多智能体系统。 Agent的决策模块和交互协议的设计基于一个 分布式图着色算法,这也将在本项目中开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wang, Chun其他文献

Octadecyl-Modified Graphene as an Adsorbent for Hollow Fiber Liquid Phase Microextraction of Chlorophenols from Honey
十八烷基改性石墨烯作为中空纤维液相微萃取蜂蜜中氯酚的吸附剂
  • DOI:
    10.5012/bkcs.2014.35.4.1011
  • 发表时间:
    2014-04
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Tang, Ranxiao;Wu, Qiuhua;Wang, Chun;Wang, Zhi
  • 通讯作者:
    Wang, Zhi
A fine construction method of urban road DEM considering road morphological characteristics.
  • DOI:
    10.1038/s41598-022-19349-4
  • 发表时间:
    2022-09-02
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Tao, Yu;Tian, Lei;Wang, Chun;Dai, Wen;Xu, Yan
  • 通讯作者:
    Xu, Yan
Study characteristical and regional influences on postpartum depression before vs. during the COVID-19 pandemic: A systematic review and meta-analysis.
  • DOI:
    10.3389/fpubh.2023.1102618
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Zhang, Xiaoqian;Wang, Chun;Zuo, Xiaoli;Aertgeerts, Bert;Buntinx, Frank;Li, Tang;Vermandere, Mieke
  • 通讯作者:
    Vermandere, Mieke
An efficient green synthesis of xanthenedione derivatives promoted by acidic ionic liquid
  • DOI:
    10.1002/hc.20486
  • 发表时间:
    2008-01-01
  • 期刊:
  • 影响因子:
    0.3
  • 作者:
    Ma, Jing-Jun;Wang, Chun;Li, Qing
  • 通讯作者:
    Li, Qing
EXTRACTION OF SOME CHLOROPHENOLS FROM ENVIRONMENTAL WATERS USING A NOVEL GRAPHENE-BASED MAGNETIC NANOCOMPOSITE FOLLOWED BY HPLC DETERMINATION
使用新型石墨烯磁性纳米复合材料从环境水中提取一些氯酚,然后进行 HPLC 测定

Wang, Chun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wang, Chun', 18)}}的其他基金

Dynamic Scheduling Mechanism Design in Multi-Agent Systems
多Agent系统中的动态调度机制设计
  • 批准号:
    RGPIN-2016-06691
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic Scheduling Mechanism Design in Multi-Agent Systems
多Agent系统中的动态调度机制设计
  • 批准号:
    RGPIN-2016-06691
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic Scheduling Mechanism Design in Multi-Agent Systems
多Agent系统中的动态调度机制设计
  • 批准号:
    RGPIN-2016-06691
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic Scheduling Mechanism Design in Multi-Agent Systems
多Agent系统中的动态调度机制设计
  • 批准号:
    RGPIN-2016-06691
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic Scheduling Mechanism Design in Multi-Agent Systems
多Agent系统中的动态调度机制设计
  • 批准号:
    RGPIN-2016-06691
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic Scheduling Mechanism Design in Multi-Agent Systems
多Agent系统中的动态调度机制设计
  • 批准号:
    RGPIN-2016-06691
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Decentralized scheduling for multi-agent systems through mechanism design
通过机制设计实现多智能体系统的去中心化调度
  • 批准号:
    371775-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Decentralized scheduling for multi-agent systems through mechanism design
通过机制设计实现多智能体系统的去中心化调度
  • 批准号:
    371775-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Decentralized scheduling for multi-agent systems through mechanism design
通过机制设计实现多智能体系统的去中心化调度
  • 批准号:
    371775-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Decentralized scheduling for multi-agent systems through mechanism design
通过机制设计实现多智能体系统的去中心化调度
  • 批准号:
    371775-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Directed and adaptive evolution of photosynthetic systems
光合系统的定向和适应性进化
  • 批准号:
    MR/Y011635/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Fellowship
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
CLIMA: Nimble, Adaptive, and Reusable Structures (NARS): Systems, Mechanics, and Financing
CLIMA:灵活、自适应和可重复使用的结构 (NARS):系统、力学和融资
  • 批准号:
    2331994
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
CAREER: Towards Environment-Aware Adaptive Safety for Learning-Enabled Multiagent Systems with Application to Target Drone Capturing
职业:为支持学习的多智能体系统实现环境感知的自适应安全,并应用于目标无人机捕获
  • 批准号:
    2336189
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
  • 批准号:
    2338555
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324936
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324937
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Scalable MPI with Adaptive Compression for GPU-based Computing Systems
RII Track-4:NSF:适用于基于 GPU 的计算系统的具有自适应压缩的可扩展 MPI
  • 批准号:
    2327266
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Development of emergence simulator for complex adaptive systems applicable to life science, ecosystems, and social phenomena
开发适用于生命科学、生态系统和社会现象的复杂自适应系统的涌现模拟器
  • 批准号:
    23K04283
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了