Exploration of Ferroelectric Materials and Negative Capacitance Effect for Next-Generation Chips Used in Wireless Mobile Products

无线移动产品中使用的下一代芯片的铁电材料和负电容效应的探索

基本信息

  • 批准号:
    485386-2015
  • 负责人:
  • 金额:
    $ 1.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Reduced power consumption is an ongoing goal of the wireless mobile-computing industry to extend battery life and improve end-user experience (e.g., with smartphones and tablets). Understanding and exploiting techniques that may yield reduced power consumption is thus of vital interest to Qualcomm Canada, Inc. to maintain its edge as a world-leading supplier of product solutions for wireless radio-frequency (RF) applications. One possible solution is the use of ferroelectric capacitors to create "negative capacitance" to increase the switching speed and reduce the power consumption of transistors. Work on the use of ferroelectrics for improved transistor performance has been limited to the initial idea itself and preliminary experimental validation. In addition, work to date has focused on digital performance, with no work done on studying possible improvements for analog RF applications. Qualcomm seeks to know whether ferroelectrics can indeed offer improved performance and/or reduced power consumption as it is of strategic importance for future products. Ferroelectric materials are a particularly promising avenue of improvement, since ferroelectric field-effect transistors can be made using existing fabrication methods with very little modification. The hardware and software initiatives of Qualcomm depend on them exploiting the most leading-edge chip technologies available. Understanding and leveraging power-consumption and performance gains facilitated by emerging technologies such as ferroelectrics is thus of direct relevance to Qualcomm in maintaining its position as a market leader in the wireless mobile industry. In addition, the proposed work will contribute to the creation of highly qualified personnel (HQP) that are experts in leading-edge semiconductor-device and circuit technologies. Such HQP are vital for Canadian high-technology firms to retain their global edge.
降低功耗是无线移动计算行业的一个持续目标,旨在延长电池寿命并改善最终用户体验(例如智能手机和平板电脑)。 因此,了解和利用可降低功耗的技术对于高通加拿大公司保持其作为无线射频 (RF) 应用产品解决方案世界领先供应商的优势至关重要。 一种可能的解决方案是使用铁电电容器来创建“负电容”,以提高开关速度并降低晶体管的功耗。 使用铁电体来提高晶体管性能的工作仅限于最初的想法本身和初步的实验验证。 此外,迄今为止的工作主要集中在数字性能上,没有研究模拟射频应用的可能改进。 高通公司试图了解铁电材料是否确实能够提供更高的性能和/或更低的功耗,因为它对于未来的产品具有战略重要性。 铁电材料是一种特别有前途的改进途径,因为铁电场效应晶体管可以使用现有的制造方法来制造,只需很少的修改。 高通的硬件和软件计划依赖于它们利用最前沿的芯片技术。 因此,了解和利用铁电体等新兴技术带来的功耗和性能提升对于高通保持无线移动行业市场领导者的地位具有直接关系。 此外,拟议的工作将有助于培养高素质人才(HQP),他们是尖端半导体器件和电路技术的专家。 这样的总部基地对于加拿大高科技公司保持其全球优势至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vaidyanathan, Mani其他文献

Impact of Contact Resistance on the fT and fmax of Graphene Versus MoS2 Transistors
  • DOI:
    10.1109/tnano.2016.2630698
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Holland, Kyle D.;Alam, Ahsan U.;Vaidyanathan, Mani
  • 通讯作者:
    Vaidyanathan, Mani
Self-consistent ac quantum transport using nonequilibrium Green functions
  • DOI:
    10.1103/physrevb.81.115455
  • 发表时间:
    2010-03-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Kienle, Diego;Vaidyanathan, Mani;Leonard, Francois
  • 通讯作者:
    Leonard, Francois
RF Performance Limits and Operating Physics Arising From the Lack of a Bandgap in Graphene Transistors
  • DOI:
    10.1109/tnano.2013.2260351
  • 发表时间:
    2013-07-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Holland, Kyle D.;Paydavosi, Navid;Vaidyanathan, Mani
  • 通讯作者:
    Vaidyanathan, Mani

Vaidyanathan, Mani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vaidyanathan, Mani', 18)}}的其他基金

Towards 5 nm and Beyond: Understanding Nanoscale Transistors for Future Electronics
迈向 5 纳米及以上:了解未来电子产品的纳米级晶体管
  • 批准号:
    RGPIN-2016-06160
  • 财政年份:
    2021
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Discovery Grants Program - Individual
Towards 5 nm and Beyond: Understanding Nanoscale Transistors for Future Electronics
迈向 5 纳米及以上:了解未来电子产品的纳米级晶体管
  • 批准号:
    RGPIN-2016-06160
  • 财政年份:
    2020
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Discovery Grants Program - Individual
Towards 5 nm and Beyond: Understanding Nanoscale Transistors for Future Electronics
迈向 5 纳米及以上:了解未来电子产品的纳米级晶体管
  • 批准号:
    RGPIN-2016-06160
  • 财政年份:
    2019
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Discovery Grants Program - Individual
Towards 5 nm and Beyond: Understanding Nanoscale Transistors for Future Electronics
迈向 5 纳米及以上:了解未来电子产品的纳米级晶体管
  • 批准号:
    RGPIN-2016-06160
  • 财政年份:
    2018
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Discovery Grants Program - Individual
Towards 5 nm and Beyond: Understanding Nanoscale Transistors for Future Electronics
迈向 5 纳米及以上:了解未来电子产品的纳米级晶体管
  • 批准号:
    RGPIN-2016-06160
  • 财政年份:
    2017
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Discovery Grants Program - Individual
Towards 5 nm and Beyond: Understanding Nanoscale Transistors for Future Electronics
迈向 5 纳米及以上:了解未来电子产品的纳米级晶体管
  • 批准号:
    RGPIN-2016-06160
  • 财政年份:
    2016
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding nanoscale elecctronic devices for future technologies
了解未来技术的纳米级电子设备
  • 批准号:
    313234-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding nanoscale elecctronic devices for future technologies
了解未来技术的纳米级电子设备
  • 批准号:
    313234-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding nanoscale elecctronic devices for future technologies
了解未来技术的纳米级电子设备
  • 批准号:
    313234-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding nanoscale elecctronic devices for future technologies
了解未来技术的纳米级电子设备
  • 批准号:
    313234-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

ExpandQISE: Track 1: Ferroelectric Ordering and Polarization-Coupled Transport Properties in 2D Van der Waals Materials
ExpandQISE:轨道 1:2D 范德华材料中的铁电有序和极化耦合输运特性
  • 批准号:
    2329159
  • 财政年份:
    2023
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Standard Grant
A New Order of Liquids: Polar and ferroelectric orientationally modulated soft materials
液体的新秩序:极性和铁电取向调制软材料
  • 批准号:
    MR/W006391/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Fellowship
Investigation of novel multi-level non-volatile memory devices using ferroelectric hafnium oxide based materials for artificial synapse devises
使用铁电氧化铪基材料研究用于人工突触装置的新型多级非易失性存储器件
  • 批准号:
    21J01667
  • 财政年份:
    2021
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Agile electronics through ferroelectric switching of two-dimensional materials
通过二维材料的铁电开关实现敏捷电子学
  • 批准号:
    2569967
  • 财政年份:
    2021
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Studentship
Development of novel ferroelectric materials having cooperative mobility
具有协同迁移率的新型铁电材料的开发
  • 批准号:
    21K14606
  • 财政年份:
    2021
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development and study of new pyroelectric / ferroelectric molecular materials based on intramolecular electron transfer
基于分子内电子转移的新型热电/铁电分子材料的开发与研究
  • 批准号:
    21K05086
  • 财政年份:
    2021
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Domain-Engineering Enabled Thermal Switching in Ferroelectric Materials
领域工程支持铁电材料中的热开关
  • 批准号:
    2011978
  • 财政年份:
    2020
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Continuing Grant
Multiscale Modeling and Simulation of Ferroelectric Materials
铁电材料的多尺度建模与仿真
  • 批准号:
    414986811
  • 财政年份:
    2019
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Research Grants
Studies of functional silicate ferroelectric materials by quantum beam science
量子束科学研究功能硅酸盐铁电材料
  • 批准号:
    19K05010
  • 财政年份:
    2019
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploration of Ferroelectric Materials and Negative Capacitance Effect
铁电材料与负电容效应的探索
  • 批准号:
    504704-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了