Lightweight Subspace Coding (LSC) for Wireless Sensor Networks

无线传感器网络的轻量级子空间编码 (LSC)

基本信息

  • 批准号:
    486067-2015
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Canadian wildfires have grown in quantity and severity over the past few decades. In 2015 Canada experienced a 40% increase in the total number of wildfires (5,830 fires) and an increase of 23% in burned area (3,893,861 Hectares), compared to 2014. It is known that Wireless Sensor Networks (WSN) offer early detection of wildfires, however, the deployment of WSN in the wild remains economically prohibitive. Alternatively, small scale deployments to high-risk areas are only feasible if a reliable and flexible solution can be found to overcome the challenges of light weight communications. In the past few years development of network architectures have been characterized by a consistent increase in complexity and sophistication. Since modern protocols must ultimately operate at acceptable speeds in production networks-and alongside one another-the demand for faster and higher capacity hardware has grown considerably. Alternatively, WSN environments require minimum hardware capabilities, minimum protocol structure, and minimum battery consumption; yet, it requires rapid integration with the increasingly elaborate infrastructure built for notably smarter devices. Our industrial partner is focused on studying light weight custom data planes for WSN in order to guarantee resource isolation that enable the utilization of parallel data planes. This project is focused on improving the capacity of generic sensors with less than a linear increase in resource utilization, so the design can scale as the field-programmable gate array (FPGA) capacity continues to increase. This is achievable if the routing layer is replaced by a Lightweight Subspace Coding (LSC) layer. The proposed solution will allow our partner to develop WSN for wildfire monitoring leading to increased client-base in Canada and internationally.
过去几十年来,加拿大野火的数量和严重程度不断增加。 2015年加拿大经历了 野火总数增加 40%(5,830 起),过火面积增加 23%(3,893,861 公顷),与 2014 年相比。众所周知,无线传感器网络 (WSN) 可以提供早期检测 然而,在野火中,在野外部署无线传感器网络在经济上仍然令人望而却步。或者,小 只有找到可靠、灵活的解决方案,向高风险地区大规模部署才可行。 克服轻量级通信的挑战。 在过去几年中,网络架构的发展特点是网络数量持续增长 复杂性和复杂性。由于现代协议最终必须以可接受的速度运行 生产网络以及对更快、更高容量硬件的需求不断增长 相当。或者,WSN 环境需要最少的硬件功能、最少的协议 结构和最小电池消耗;然而,它需要与日益复杂的系统快速集成 为更加智能的设备而构建的基础设施。 我们的工业合作伙伴专注于研究 WSN 的轻量级定制数据平面,以保证 资源隔离,支持并行数据平面的利用。该项目的重点是改善 通用传感器的容量与资源利用率的线性增加相比,因此设计可以随着 现场可编程门阵列(FPGA)容量不断增加。如果路由层是可以实现的 被轻量级子空间编码(LSC)层取代。拟议的解决方案将使我们的合作伙伴能够 开发用于野火监测的无线传感器网络,从而增加加拿大和国际上的客户群。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Morgan, Yasser其他文献

Real-Time Vehicle Make and Model Recognition System

Morgan, Yasser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Morgan, Yasser', 18)}}的其他基金

Adaptive Autonomous Architectural Framework for Intelligent Autonomous Subsystems
智能自治子系统的自适应自治架构框架
  • 批准号:
    RGPIN-2019-06136
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Autonomous Architectural Framework for Intelligent Autonomous Subsystems
智能自治子系统的自适应自治架构框架
  • 批准号:
    RGPIN-2019-06136
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Autonomous Architectural Framework for Intelligent Autonomous Subsystems
智能自治子系统的自适应自治架构框架
  • 批准号:
    RGPIN-2019-06136
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Hierarchical Autonomous Context-Aware Distributed Clustered Vehicular Ad-hoc Networks (VANET)
迈向分层自治上下文感知分布式集群车载自组织网络 (VANET)
  • 批准号:
    356096-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Hierarchical Autonomous Context-Aware Distributed Clustered Vehicular Ad-hoc Networks (VANET)
迈向分层自治上下文感知分布式集群车载自组织网络 (VANET)
  • 批准号:
    356096-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Digital Message Confidentiality
数字消息保密性
  • 批准号:
    485570-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program
Towards Hierarchical Autonomous Context-Aware Distributed Clustered Vehicular Ad-hoc Networks (VANET)
迈向分层自治上下文感知分布式集群车载自组织网络 (VANET)
  • 批准号:
    356096-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Hierarchical Autonomous Context-Aware Distributed Clustered Vehicular Ad-hoc Networks (VANET)
迈向分层自治上下文感知分布式集群车载自组织网络 (VANET)
  • 批准号:
    356096-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Public safety computing
公共安全计算
  • 批准号:
    452593-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Interaction Grants Program
Towards Hierarchical Autonomous Context-Aware Distributed Clustered Vehicular Ad-hoc Networks (VANET)
迈向分层自治上下文感知分布式集群车载自组织网络 (VANET)
  • 批准号:
    356096-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

DMS/NIGMS 1: Multilevel stochastic orthogonal subspace transformations for robust machine learning with applications to biomedical data and Alzheimer's disease subtyping
DMS/NIGMS 1:多级随机正交子空间变换,用于稳健的机器学习,应用于生物医学数据和阿尔茨海默病亚型分析
  • 批准号:
    2347698
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
EPSRC-SFI: Krylov subspace methods for non-symmetric PDE problems: a deeper understanding and faster convergence
EPSRC-SFI:非对称 PDE 问题的 Krylov 子空间方法:更深入的理解和更快的收敛
  • 批准号:
    EP/W035561/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grant
AF: Small: RUI: Toward High-Performance Block Krylov Subspace Algorithms for Solving Large-Scale Linear Systems
AF:小:RUI:用于求解大规模线性系统的高性能块 Krylov 子空间算法
  • 批准号:
    2327619
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Developing subspace methods for constrained optimization problems and their application to machine learning
开发约束优化问题的子空间方法及其在机器学习中的应用
  • 批准号:
    23H03351
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of learning subspace-based methods for pattern recognition
基于学习子空间的模式识别方法的开发
  • 批准号:
    22K17960
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ensemble subspace, penalty, pretest, and shrinkage strategies for high dimensional data
高维数据的集成子空间、惩罚、预测试和收缩策略
  • 批准号:
    RGPIN-2017-05228
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Inference for High-Dimensional Structures via Subspace Learning: Statistics, Computation, and Beyond
职业:通过子空间学习推理高维结构:统计、计算及其他
  • 批准号:
    2203741
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
Improvement of prediction accuracy of advanced reactors: Precise and robust cross section adjustment method based on active subspace approach
先进反应堆预测精度的提高:基于主动子空间方法的精确鲁棒截面调整方法
  • 批准号:
    21K04940
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a closed-loop subspace identification method with accuracy assurance
一种精度保证的闭环子空间识别方法的开发
  • 批准号:
    21K04124
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tensor and Subspace Learning Methods with Applications to Medical Imaging
张量和子空间学习方法及其在医学成像中的应用
  • 批准号:
    2053697
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了