Data mining to discover trends on social media

数据挖掘以发现社交媒体趋势

基本信息

  • 批准号:
    486701-2015
  • 负责人:
  • 金额:
    $ 1.63万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Content on social media platforms such as YouTube is often user-generated and is now the predominant form of information consumption and sharing. The ability of many millions of users to generate content leads to information glut that requires new methods for searching and filtering content that is available on these platforms. On the other hand, some content becomes extremely popular and have a large audience and a majority of the content receives little attention. The central question that we would like to begin answering through this study can be stated as follows: "What makes certain social media content dramatically popular?" Related to this major question are a few other questions: -- What factors affect the evolution of a social media object with time? -- What is the impact of the social context within which an object is created and made available? The social context includes the author, the author's social neighborhood, and the nature of the content itself. -- Are there specific interventions - including metadata modifications (when possible) - that affect object popularity? By answering these questions, we hope to identify guidelines for selecting objects that are likely to become popular as well as actions that can be taken to improve the popularity of objects. These observations can guide content creators as well as groups such as our partner organization, BBTV, in marketing social media content.
YouTube等社交媒体平台上的内容通常是用户生成的,现在是信息消费和分享的主要形式。数百万用户生成内容的能力导致信息过剩,这就需要新的方法来搜索和过滤这些平台上可用的内容。另一方面,一些内容变得非常受欢迎,拥有大量的受众,而大多数内容很少受到关注。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gopalakrishnan, Sathish其他文献

Revised International Staging System Is Predictive and Prognostic for Early Relapse (
  • DOI:
    10.1016/j.bbmt.2018.12.141
  • 发表时间:
    2019-04-01
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Gopalakrishnan, Sathish;D'Souza, Anita;Hari, Parameswaran
  • 通讯作者:
    Hari, Parameswaran

Gopalakrishnan, Sathish的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gopalakrishnan, Sathish', 18)}}的其他基金

Developing Mixed-Criticality Real-Time Systems: Analysis Methods and Tools
开发混合关键实时系统:分析方法和工具
  • 批准号:
    RGPIN-2017-04477
  • 财政年份:
    2021
  • 资助金额:
    $ 1.63万
  • 项目类别:
    Discovery Grants Program - Individual
Developing Mixed-Criticality Real-Time Systems: Analysis Methods and Tools
开发混合关键实时系统:分析方法和工具
  • 批准号:
    RGPIN-2017-04477
  • 财政年份:
    2020
  • 资助金额:
    $ 1.63万
  • 项目类别:
    Discovery Grants Program - Individual
Developing Mixed-Criticality Real-Time Systems: Analysis Methods and Tools
开发混合关键实时系统:分析方法和工具
  • 批准号:
    RGPIN-2017-04477
  • 财政年份:
    2019
  • 资助金额:
    $ 1.63万
  • 项目类别:
    Discovery Grants Program - Individual
Developing Mixed-Criticality Real-Time Systems: Analysis Methods and Tools
开发混合关键实时系统:分析方法和工具
  • 批准号:
    RGPIN-2017-04477
  • 财政年份:
    2018
  • 资助金额:
    $ 1.63万
  • 项目类别:
    Discovery Grants Program - Individual
Developing Mixed-Criticality Real-Time Systems: Analysis Methods and Tools
开发混合关键实时系统:分析方法和工具
  • 批准号:
    RGPIN-2017-04477
  • 财政年份:
    2017
  • 资助金额:
    $ 1.63万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling adaptation in embedded and real-time systems
实现嵌入式和实时系统的适应
  • 批准号:
    342751-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.63万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling adaptation in embedded and real-time systems
实现嵌入式和实时系统的适应
  • 批准号:
    342751-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.63万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling adaptation in embedded and real-time systems
实现嵌入式和实时系统的适应
  • 批准号:
    342751-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.63万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling adaptation in embedded and real-time systems
实现嵌入式和实时系统的适应
  • 批准号:
    342751-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.63万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling adaptation in embedded and real-time systems
实现嵌入式和实时系统的适应
  • 批准号:
    342751-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.63万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于Genome mining技术研究抑制表皮葡萄球菌生物膜形成的次级代谢产物
  • 批准号:
    21242003
  • 批准年份:
    2012
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
在我们的门前发掘化石——利用中国即将开展的巡天来研究银河系的演化
  • 批准号:
    11043005
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
高维稀疏数据聚类研究
  • 批准号:
    70771007
  • 批准年份:
    2007
  • 资助金额:
    16.0 万元
  • 项目类别:
    面上项目
林火行为的动态模拟信息系统
  • 批准号:
    30371171
  • 批准年份:
    2003
  • 资助金额:
    17.0 万元
  • 项目类别:
    面上项目

相似海外基金

Integrating genetics and health data to discover common drug effects on cancer and Alzheimer's disease
整合遗传学和健康数据来发现药物对癌症和阿尔茨海默病的常见影响
  • 批准号:
    10714080
  • 财政年份:
    2023
  • 资助金额:
    $ 1.63万
  • 项目类别:
Exploring Novel Mathematical Models and Efficient Algorithms to Discover Periodic Spatial Patterns in Irregular Spatiotemporal Big Data
探索新颖的数学模型和高效算法以发现不规则时空大数据中的周期性空间模式
  • 批准号:
    21K12034
  • 财政年份:
    2021
  • 资助金额:
    $ 1.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combine Genomics and Symptoms Data Driven Models to Discover Synergistic Combinatory Therapies for Alzheimer's Disease
结合基因组学和症状数据驱动模型来发现阿尔茨海默病的协同组合疗法
  • 批准号:
    10228346
  • 财政年份:
    2020
  • 资助金额:
    $ 1.63万
  • 项目类别:
Combine Genomics and Symptoms Data Driven Models to Discover Synergistic Combinatory Therapies for Alzheimer's Disease
结合基因组学和症状数据驱动模型来发现阿尔茨海默病的协同组合疗法
  • 批准号:
    10254376
  • 财政年份:
    2020
  • 资助金额:
    $ 1.63万
  • 项目类别:
A Scalable Platform to Discover Antimicrobials of Ribosomal Origin
发现核糖体来源抗菌药物的可扩展平台
  • 批准号:
    9899917
  • 财政年份:
    2019
  • 资助金额:
    $ 1.63万
  • 项目类别:
A Scalable Platform to Discover Antimicrobials of Ribosomal Origin
发现核糖体来源抗菌药物的可扩展平台
  • 批准号:
    10570218
  • 财政年份:
    2019
  • 资助金额:
    $ 1.63万
  • 项目类别:
A Scalable Platform to Discover Antimicrobials of Ribosomal Origin
发现核糖体来源抗菌药物的可扩展平台
  • 批准号:
    10359678
  • 财政年份:
    2019
  • 资助金额:
    $ 1.63万
  • 项目类别:
Mining genome-wide association data to discover and fine-map genomic regions involved in complex traits and disease
挖掘全基因组关联数据以发现和精细绘制涉及复杂性状和疾病的基因组区域
  • 批准号:
    382604
  • 财政年份:
    2018
  • 资助金额:
    $ 1.63万
  • 项目类别:
    Operating Grants
Using a combined approach of molecular microbiology, genomic mining and phylogenomics to discover and activate cryptic biosynthetic gene clusters in S
利用分子微生物学、基因组挖掘和系统基因组学的综合方法来发现和激活 S 中隐藏的生物合成基因簇
  • 批准号:
    2097313
  • 财政年份:
    2018
  • 资助金额:
    $ 1.63万
  • 项目类别:
    Studentship
New Approaches to Mining the Complete Actinomycete Genome to Discover Novel Beta-Lactam Antibiotics
挖掘完整放线菌基因组以发现新型β-内酰胺抗生素的新方法
  • 批准号:
    9409126
  • 财政年份:
    2017
  • 资助金额:
    $ 1.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了