Microstructural evolution of materials under shear
剪切下材料的微观结构演变
基本信息
- 批准号:RGPIN-2014-04478
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The properties of a material, such as the stiffness of a solid or the ability of a soft material to flow, are directly related to its microstructure. One example would be the different microstuctures of steel, which depend on how it’s forged and cooled. One structural pattern can result in hard steel, while another can render it too brittle to use. Another example of microstructure in action comes from the tiny particles added to toothpaste. The interaction of these particles determine how the toothpaste flows: They allow toothpaste to be squeezed out of the tube like a fluid, and to sit like a solid on our toothbrush while it waits to be sheared it across our teeth. When a material undergoes a deformation like this, it’s undergoing a nonequilibrium process. However, most of our knowledge about material microstructure comes from equilibrium measurements, when materials are still. As in the cases of steel being forged or toothpaste being squeezed, ignoring how the microstructure changes during nonequilibrium processes can leave out crucial parts of its story. Uncovering the physics of this story is the focus of my research.
The discovery of X-rays in 1895 brought forth a revolution in our knowledge about materials: For the first time, we could “see” the arrangement of atoms in materials. X-ray measurements revealed everything from the helical shape of DNA to the crystal structure of diamond. Today, highly bright and coherent X-ray beams from synchrotrons are fueling a similar revolution: They enable rapid measurement of subtle changes in structure. The measurement technique I use to do this is called X-ray Photon Correlation Spectroscopy (XPCS), which I use to measure microstrucutral evolution in both soft and hard materials.
Rheology is the study of how materials flow. As in the toothpaste example above, this can be far from straightforward. An important part of determining rheological properties is to measure material response to shear. Like toothpaste, many soft materials, such as creams, paints, or ketchup, consist of tiny suspended particles. The rheology of these materials depends on the interaction of the suspended particles and how they collectively form microstructure. Moreover, when a soft material is sheared, the microstructure changes, which in turn effects the response to shear. The nature of this complex interplay remains a central challenge in my field. To address this problem, I will use a custom-designed shear cell in tandem with XPCS to measure microstructural changes in soft materials while they are sheared and during their recovery. These measurements will provide an unprecedented view of the coupling between microscopic and macroscopic response to deformation.
The hard materials we will investigate are Shape Memory Alloys (SMAs). These materials have the fascinating ability to “remember” their original shape: Once deformed, heating them up returns them back to their original configuration. At the heart of this process is a solid-solid phase transition facilitated by shifting of atomic stacking layers. The crystal structures on either side of the transition are well known; however the dynamics that drive the transformation process are poorly understood. According to acoustic emission studies, we know that these materials “crackle” as they transform. This indicates that the shear stresses between stacking layers lead to a series of intermittent bursts of atomic motion, called microstructural avalanches. Measuring the properties of these avalanches with coherent X-ray scattering will lead to a much better understanding of SMAs, which will help tailor them for their many applications in the aerospace, transportation, and medical industries.
材料的性质,如固体的刚度或软材料的流动能力,与其微观结构直接相关。一个例子是钢的不同微观结构,这取决于它是如何锻造和冷却的。一种结构模式可以导致坚硬的钢,而另一种结构模式可以使其太脆而无法使用。微观结构的另一个例子来自牙膏中添加的微小颗粒。这些颗粒的相互作用决定了牙膏的流动方式:它们允许牙膏像流体一样从牙膏管中挤出,并像固体一样坐在我们的牙刷上,等待在我们的牙齿上剪切它。当材料经历这样的变形时,它经历了一个非平衡过程。然而,我们对材料微观结构的大部分知识来自平衡测量,当材料静止时。就像钢铁被锻造或牙膏被挤压的情况一样,忽略非平衡过程中微观结构的变化可能会遗漏其故事的关键部分。揭开这个故事的物理原理是我研究的重点。
1895年,X射线的发现给我们的材料知识带来了一场革命:我们第一次可以“看到”材料中原子的排列。X射线测量揭示了从DNA的螺旋形状到钻石的晶体结构的一切。今天,来自同步加速器的高度明亮和相干的X射线束正在推动一场类似的革命:它们能够快速测量结构的细微变化。我用来做这件事的测量技术被称为X射线光子相关光谱(XPCS),我用它来测量软材料和硬材料的微观结构演变。
流变学是研究物质如何流动的学科。就像上面的牙膏例子一样,这远非简单明了。确定流变特性的一个重要部分是测量材料对剪切的响应。像牙膏一样,许多柔软的材料,如乳霜、油漆或番茄酱,都是由微小的悬浮颗粒组成的。这些材料的流变性取决于悬浮颗粒的相互作用以及它们如何共同形成微观结构。此外,当软材料被剪切时,微观结构发生变化,这反过来又影响对剪切的响应。这种复杂的相互作用的性质仍然是我所在领域的一个核心挑战。为了解决这个问题,我将使用定制设计的剪切单元与XPCS串联,以测量软材料在剪切和恢复过程中的微观结构变化。这些测量将提供一个前所未有的视图之间的耦合变形的微观和宏观响应。
我们将研究的硬材料是形状记忆合金(SMA)。这些材料具有“记住”其原始形状的迷人能力:一旦变形,加热它们就会使其恢复到原始形状。该过程的核心是通过原子堆叠层的移动促进的固-固相变。转变两侧的晶体结构是众所周知的;然而,驱动转变过程的动力学却知之甚少。根据声发射研究,我们知道这些材料在变形时会发出“裂纹”。这表明,堆叠层之间的剪切应力导致了一系列间歇性的原子运动爆发,称为微观结构雪崩。用相干X射线散射测量这些雪崩的性质将有助于更好地理解SMA,这将有助于为它们在航空航天、运输和医疗行业的许多应用量身定制它们。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rogers, Michael其他文献
Recent Studies and Applications of Hydrogel-Based Biosensors in Food Safety.
- DOI:
10.3390/foods12244405 - 发表时间:
2023-12-07 - 期刊:
- 影响因子:5.2
- 作者:
Li, Yuzhen;Zhang, Hongfa;Qi, Yan;You, Chunping;Rogers, Michael - 通讯作者:
Rogers, Michael
Distinct responses to rare codons in select Drosophila tissues.
- DOI:
10.7554/elife.76893 - 发表时间:
2022-05-06 - 期刊:
- 影响因子:7.7
- 作者:
Allen, Scott R.;Stewart, Rebeccah K.;Rogers, Michael;Ruiz, Ivan Jimenez;Cohen, Erez;Laederach, Alain;Counter, Christopher M.;Sawyer, Jessica K.;Fox, Donald T. - 通讯作者:
Fox, Donald T.
Novel Selenium-based compounds with therapeutic potential for SOD1-linked amyotrophic lateral sclerosis
- DOI:
10.1016/j.ebiom.2020.102980 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:11.1
- 作者:
Amporndanai, Kangsa;Rogers, Michael;Hasnain, S. Samar - 通讯作者:
Hasnain, S. Samar
Comparison of complication rates between anterior versus posterior approaches for treating unstable Hangman's fracture. A systematic review and meta-analysis.
- DOI:
10.1016/j.wnsx.2023.100245 - 发表时间:
2024-01 - 期刊:
- 影响因子:0
- 作者:
Pereira-Duarte, Matias;Gagliardi, Martin;Carazzo, Charles Andre;Camino-Willhuber, Gaston;Gotfryd, Alberto;Rogers, Michael;Guiroy, Alfredo - 通讯作者:
Guiroy, Alfredo
Reflecting on the Scalable Adaptive Graphics Environment Team’s 20-Year Translational Research Endeavor in Digital Collaboration Tools
反思可扩展自适应图形环境团队 20 年数字协作工具转化研究成果
- DOI:
10.1109/mcse.2023.3297753 - 发表时间:
2023 - 期刊:
- 影响因子:2.1
- 作者:
Belcaid, Mahdi;Leigh, Jason;Theriot, Ryan;Kirshenbaum, Nurit;Tabalba, Roderick;Rogers, Michael;Johnson, Andrew;Brown, Maxine;Renambot, Luc;Long, Lance - 通讯作者:
Long, Lance
Rogers, Michael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rogers, Michael', 18)}}的其他基金
Deciphering and quantifying molecular interactions driving self-assembly and fibrillar growth in organogels
破译和量化驱动有机凝胶中自组装和纤维生长的分子相互作用
- 批准号:
RGPIN-2017-03869 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Deciphering and quantifying molecular interactions driving self-assembly and fibrillar growth in organogels
破译和量化驱动有机凝胶中自组装和纤维生长的分子相互作用
- 批准号:
RGPIN-2017-03869 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Deciphering and quantifying molecular interactions driving self-assembly and fibrillar growth in organogels
破译和量化驱动有机凝胶中自组装和纤维生长的分子相互作用
- 批准号:
RGPIN-2017-03869 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Deciphering and quantifying molecular interactions driving self-assembly and fibrillar growth in organogels
破译和量化驱动有机凝胶中自组装和纤维生长的分子相互作用
- 批准号:
RGPIN-2017-03869 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Understanding formulation characteristics on the glass transition of spray powders fortified with cannabis oils
了解大麻油强化喷雾粉末玻璃化转变的配方特征
- 批准号:
543418-2019 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
发展/减排路径(SSPs/RCPs)下中国未来人口迁移与集聚时空演变及其影响
- 批准号:19ZR1415200
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
研究蝙蝠冬眠現象的分子进化机制
- 批准号:31100273
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于microRNA前体性质的microRNA演化研究
- 批准号:31100951
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
星系演化背景下的年轻超大质量星团:悬而未决的难题
- 批准号:11073001
- 批准年份:2010
- 资助金额:50.0 万元
- 项目类别:面上项目
在我们的门前发掘化石——利用中国即将开展的巡天来研究银河系的演化
- 批准号:11043005
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
基于传孢类型藓类植物系统的修订
- 批准号:30970188
- 批准年份:2009
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Time-Resolved X-Ray Tomography Studies of Microstructural Evolution in Materials
材料微观结构演化的时间分辨 X 射线断层扫描研究
- 批准号:
516809-2018 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Postgraduate Scholarships - Doctoral
Microstructural evolution and thermo-mechanical behaviour of fine-grain graphite materials
细晶石墨材料的微观结构演变和热机械行为
- 批准号:
2485520 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Studentship
Time-Resolved X-Ray Tomography Studies of Microstructural Evolution in Materials
材料微观结构演化的时间分辨 X 射线断层扫描研究
- 批准号:
516809-2018 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Postgraduate Scholarships - Doctoral
Time-Resolved X-Ray Tomography Studies of Microstructural Evolution in Materials
材料微观结构演化的时间分辨 X 射线断层扫描研究
- 批准号:
516809-2018 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Postgraduate Scholarships - Doctoral
Microstructural evolution of materials under shear
剪切下材料的微观结构演变
- 批准号:
RGPIN-2014-04478 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Microstructural evolution of materials under shear
剪切下材料的微观结构演变
- 批准号:
RGPIN-2014-04478 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Microstructural evolution of materials with hierarchic structure and their strength
分级结构材料的微观结构演化及其强度
- 批准号:
26289256 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Microstructural evolution of materials under shear
剪切下材料的微观结构演变
- 批准号:
RGPIN-2014-04478 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Inverse Problems in Microstructural Evolution of Polycrystalline Materials
多晶材料微观结构演化的反问题
- 批准号:
1216433 - 财政年份:2012
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Analysis of inhomogeneous microstructural evolution in metallic materials with the aid of system free energy
借助系统自由能分析金属材料的不均匀微观结构演化
- 批准号:
24656407 - 财政年份:2012
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research