Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
基本信息
- 批准号:RGPIN-2014-05062
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The beauty and attraction of mathematics is rooted in profound images of geometry and physics coming from our perception of reality and it’s analysis at different levels of sophistication. The job of mathematicians then is to express this beauty in terms of formal algebraic structures. Indeed, in forming algebraic structures we, mathematicians, can capture images of geometry and physics by creating a new, algebraic language in which to discuss them and make them accessible to our exploration, analysis and comprehension.
The aim of my research program is to investigate algebraic structures arising in the theory of so-called integrable models. A simple example is the famous Korteweg–de Vries equation which is a partial differential equation for a single function u(t,x) of two variables t (time) and x (spatial coordinate). This equation has a form u_t=u_xxx+u u_x where indexes t and x stand for partial derivatives. The Korteweg–de Vries equation, in spite of its simple form, possess a rich and beautiful theory that includes interesting algebraic structures, particular solutions (the so-called solitons) and links with various fields of mathematics from algebraic geometry to functional analysis. I am proposing to study more complicated integrable models over the next few years.
The first part of the proposal is devoted to quasi-linear systems of partial differential equations of the form A(u)u_t+B(u)u_x+C(u)u_y=0 where u(t,x,y) is a vector function and A, B, C are matrices depending on u. Equations of this form are useful in hydrodynamics. Such integrable systems also admit a rich mathematical theory. Many fields of mathematics (such as algebraic and differential geometry) will benefit from the development of a theory of such integrable systems.
We also wish to study similar systems that are non-homogeneous and have two independent variables t and x. A typical example is a system of two equations for two unknown functions u(t,x) and v(t,x) of the form: u_t=v u_x+1/(u-v), v_t=u v_x+1/(v-u). Because this system admits many new and unusual properties, I am convinced that it's study has the potential of significantly enriching the whole theory of integrable systems.
Other studies will be devoted to the so-called matrix integrable systems. A simple example of such system is the generalized Euler top which is an ordinary differential equation U_t=CU^2-U^2C where U(t) is a square matrix function of time t and C is a constant matrix.
The last (but not least) part of the proposal is dedicated to algebraic structures arising in the theory of quantum integrable models: namely, the so-called elliptic algebras. To explain the idea, consider three variables x, y, z which do not commute but are subject to relations: xy-yx=z, yz-zy=x, zx-xz=y. It is well known that using these relations any monomial (say, zyxy) can be written in a unique way as a linear combination of ordered monomials such as xxyzzz. A proof of this statement is not hard and based on the observation that x, y, z actually commute up to linear terms. The theory of elliptic algebras deals with similar relations but with quadratic terms only, for example xy-3yx=5z^2, yz-3zy=5x^2, zx-3xz=5y^2. The similar statement about ordered monomials is also valid in this case but the proof is much harder.
Elliptic algebras play a significant role in various branches of mathematics and mathematical physics including algebraic geometry, quantum integrable models and even homological algebra. Moreover, some structures connected with the so-called semi-classical limits of elliptic algebras are important in the theory of integrable differential equations discussed above.
To summarize, the proposed research is devoted to important algebraic structures arising in modern mathematical physics.
数学的美丽和吸引力根植于我们对现实的感知和不同复杂程度的分析所产生的深刻的几何和物理图像。数学家的工作就是用形式代数结构来表达这种美。事实上,在形成代数结构的过程中,我们数学家可以通过创造一种新的代数语言来捕捉几何和物理的图像,用这种语言来讨论它们,并使它们易于我们的探索、分析和理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Odesski, Alexandre其他文献
Odesski, Alexandre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Odesski, Alexandre', 18)}}的其他基金
Algebraic and geometric structures related to classical and quantum integrable systems
与经典和量子可积系统相关的代数和几何结构
- 批准号:
DDG-2022-00024 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Development Grant
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
- 批准号:
RGPIN-2014-05062 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
- 批准号:
RGPIN-2014-05062 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
- 批准号:
RGPIN-2014-05062 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
- 批准号:
RGPIN-2014-05062 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
- 批准号:
RGPIN-2014-05062 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
对RS和AG码新型软判决代数译码的研究
- 批准号:61671486
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
Ginzburg-Landau 型发展方程的拓扑缺陷以及相关问题研究
- 批准号:11071206
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
Bose-Einstein凝聚、超导G-L模型以及相关问题研究
- 批准号:10771181
- 批准年份:2007
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Algebraic and geometric structures related to classical and quantum integrable systems
与经典和量子可积系统相关的代数和几何结构
- 批准号:
DDG-2022-00024 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Development Grant
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
- 批准号:
RGPIN-2014-05062 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
A study on statistical inference and survival analysis based on algebraic and geometric structures
基于代数和几何结构的统计推断和生存分析研究
- 批准号:
20K19752 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
- 批准号:
RGPIN-2014-05062 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial and Algebraic Aspects of Geometric Structures
几何结构的组合和代数方面
- 批准号:
1922091 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Study on Statistical Methods based on Geometric and Algebraic Structures
基于几何和代数结构的统计方法研究
- 批准号:
17K12651 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
- 批准号:
RGPIN-2014-05062 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
- 批准号:
RGPIN-2014-05062 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
- 批准号:
RGPIN-2014-05062 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Research on geometric and algebraic structures of solutions and spectrums in hyperbolic - parabolic control systems
双曲-抛物型控制系统解和谱的几何和代数结构研究
- 批准号:
22540227 - 财政年份:2010
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)