Algebraic and geometric structures related to integrable systems

与可积系统相关的代数和几何结构

基本信息

  • 批准号:
    RGPIN-2014-05062
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

The beauty and attraction of mathematics is rooted in profound images of geometry and physics coming from our perception of reality and it’s analysis at different levels of sophistication. The job of mathematicians then is to express this beauty in terms of formal algebraic structures. Indeed, in forming algebraic structures we, mathematicians, can capture images of geometry and physics by creating a new, algebraic language in which to discuss them and make them accessible to our exploration, analysis and comprehension. The aim of my research program is to investigate algebraic structures arising in the theory of so-called integrable models. A simple example is the famous Korteweg–de Vries equation which is a partial differential equation for a single function u(t,x) of two variables t (time) and x (spatial coordinate). This equation has a form u_t=u_xxx+u u_x where indexes t and x stand for partial derivatives. The Korteweg–de Vries equation, in spite of its simple form, possess a rich and beautiful theory that includes interesting algebraic structures, particular solutions (the so-called solitons) and links with various fields of mathematics from algebraic geometry to functional analysis. I am proposing to study more complicated integrable models over the next few years.The first part of the proposal is devoted to quasi-linear systems of partial differential equations of the form A(u)u_t+B(u)u_x+C(u)u_y=0 where u(t,x,y) is a vector function and A, B, C are matrices depending on u. Equations of this form are useful in hydrodynamics. Such integrable systems also admit a rich mathematical theory. Many fields of mathematics (such as algebraic and differential geometry) will benefit from the development of a theory of such integrable systems.We also wish to study similar systems that are non-homogeneous and have two independent variables t and x. A typical example is a system of two equations for two unknown functions u(t,x) and v(t,x) of the form: u_t=v u_x+1/(u-v), v_t=u v_x+1/(v-u). Because this system admits many new and unusual properties, I am convinced that it's study has the potential of significantly enriching the whole theory of integrable systems.Other studies will be devoted to the so-called matrix integrable systems. A simple example of such system is the generalized Euler top which is an ordinary differential equation U_t=CU^2-U^2C where U(t) is a square matrix function of time t and C is a constant matrix.The last (but not least) part of the proposal is dedicated to algebraic structures arising in the theory of quantum integrable models: namely, the so-called elliptic algebras. To explain the idea, consider three variables x, y, z which do not commute but are subject to relations: xy-yx=z, yz-zy=x, zx-xz=y. It is well known that using these relations any monomial (say, zyxy) can be written in a unique way as a linear combination of ordered monomials such as xxyzzz. A proof of this statement is not hard and based on the observation that x, y, z actually commute up to linear terms. The theory of elliptic algebras deals with similar relations but with quadratic terms only, for example xy-3yx=5z^2, yz-3zy=5x^2, zx-3xz=5y^2. The similar statement about ordered monomials is also valid in this case but the proof is much harder.Elliptic algebras play a significant role in various branches of mathematics and mathematical physics including algebraic geometry, quantum integrable models and even homological algebra. Moreover, some structures connected with the so-called semi-classical limits of elliptic algebras are important in the theory of integrable differential equations discussed above. To summarize, the proposed research is devoted to important algebraic structures arising in modern mathematical physics.
数学的美丽和吸引力植根于几何和物理的深刻图像,这些图像来自我们对现实的感知和不同层次的复杂分析。数学家的工作就是用形式的代数结构来表达这种美。事实上,在形成代数结构的过程中,我们数学家可以通过创造一种新的代数语言来捕捉几何和物理的图像,用这种语言来讨论它们,并使它们便于我们的探索、分析和理解。我的研究计划的目的是调查在所谓的可积模型理论中产生的代数结构。一个简单的例子是著名的Korteweg-de弗里斯方程,这是一个偏微分方程的两个变量t(时间)和x(空间坐标)的单一函数u(t,x)。这个方程有一个形式u_t=u_xxx+u u_x,其中下标t和x代表偏导数。Korteweg-de弗里斯方程,尽管其简单的形式,拥有丰富和美丽的理论,其中包括有趣的代数结构,特别解决方案(所谓的孤子)和链接与各种领域的数学从代数几何功能分析。我建议在未来几年内研究更复杂的可积模型,建议的第一部分致力于形式为A(u)u_t+B(u)u_x+C(u)u_y=0的拟线性偏微分方程组,其中u(t,x,y)是向量函数,A,B,C是依赖于u的矩阵。这种形式的方程在流体力学中很有用。这样的可积系统也承认一个丰富的数学理论。许多数学领域(如代数和微分几何)将受益于这种可积系统理论的发展。我们也希望研究类似的非齐次系统,并有两个独立的变量t和x。典型的例子是两个未知函数u(t,x)和v(t,x)的两个方程组,其形式为:u_t=v u_x+1/(u-v),v_t=u v_x+1/(v-u)。由于这个系统具有许多新的和不寻常的性质,我相信它的研究有可能极大地丰富整个可积系统的理论,其他的研究将致力于所谓的矩阵可积系统。一个简单的例子是广义欧拉顶,它是一个常微分方程U_t=CU^2-U^2C,其中U(t)是时间t的平方矩阵函数,C是常数矩阵。最后(但并非最不重要)部分的建议是致力于量子可积模型理论中出现的代数结构:即所谓的椭圆代数。为了解释这个想法,考虑三个变量x,y,z,它们不交换,但服从关系:xy-yx=z,yz-zy=x,zx-xz=y。众所周知,使用这些关系,任何单项式(比如zyxy)都可以以一种独特的方式写成有序单项式(比如xxyzzz)的线性组合。这个陈述的证明并不难,并且基于x,y,z实际上可交换为线性项的观察。椭圆代数的理论处理类似的关系,但只处理二次项,例如xy-3 yx =5z^2,yz-3 zy =5x^2,zx-3xz=5y^2。椭圆代数在数学和数学物理的各个分支中扮演着重要的角色,包括代数几何,量子可积模型,甚至是同调代数。此外,与椭圆代数的所谓半经典极限有关的一些结构在上面讨论的可积微分方程理论中是重要的。总之,拟议的研究致力于现代数学物理中出现的重要代数结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Odesski, Alexandre其他文献

Odesski, Alexandre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Odesski, Alexandre', 18)}}的其他基金

Algebraic and geometric structures related to classical and quantum integrable systems
与经典和量子可积系统相关的代数和几何结构
  • 批准号:
    DDG-2022-00024
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Development Grant
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
对RS和AG码新型软判决代数译码的研究
  • 批准号:
    61671486
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Ginzburg-Landau 型发展方程的拓扑缺陷以及相关问题研究
  • 批准号:
    11071206
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
Bose-Einstein凝聚、超导G-L模型以及相关问题研究
  • 批准号:
    10771181
  • 批准年份:
    2007
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Algebraic and geometric structures related to classical and quantum integrable systems
与经典和量子可积系统相关的代数和几何结构
  • 批准号:
    DDG-2022-00024
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Development Grant
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
A study on statistical inference and survival analysis based on algebraic and geometric structures
基于代数和几何结构的统计推断和生存分析研究
  • 批准号:
    20K19752
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial and Algebraic Aspects of Geometric Structures
几何结构的组合和代数方面
  • 批准号:
    1922091
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Study on Statistical Methods based on Geometric and Algebraic Structures
基于几何和代数结构的统计方法研究
  • 批准号:
    17K12651
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Research on geometric and algebraic structures of solutions and spectrums in hyperbolic - parabolic control systems
双曲-抛物型控制系统解和谱的几何和代数结构研究
  • 批准号:
    22540227
  • 财政年份:
    2010
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了