Flexible bioelectronics and micro-optical systems

灵活的生物电子学和微光学系统

基本信息

  • 批准号:
    RGPIN-2014-05858
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Bioelectronics and micro-optics are emerging technologies that will significantly impact the future of healthcare and medicine, food safety monitoring, smart packaging, wearable sensors, and public security. Bioelectronics involves interfacing functional biomaterials with microelectrodes, optoelectronic sensors, and semiconductor devices. A wide variety of catalysts (enzymes), biomolecules (proteins, lipids, nucleic acids), micro-organisms and neural cells can be used to provide highly effective molecular recognition and binding capabilities. The electronic and optoelectronic circuitry attached to biological tissue, plants, thin artificial membranes, and textiles should also be mechanically flexible so that the device can conform to the shape of the underlying object. Recent advances in electrically conductive inks (PEDOT:PSS, Au, Ag) have encouraged researchers to explore drop-on-demand printing technology as a viable approach for creating interconnects and electrodes on a variety of bendable and stretchable substrates. Printing technology is also capable of dispensing picoliter droplets of transparent thermoplastic on microcircuit surfaces to fabricate waveguides, microlenses and photonic structures. Preliminary research at Western has shown that electrically conductive graphene and semiconductive graphene-oxide (GO) can be synthesized from inexpensive graphite powders and dispersed in solvents to form printable inks. Once the GO ink is deposited on a substrate the electrical conductivity can be partially restored through thermal reduction using laser-induced heating. This "tunable band-gap" makes thermally reduced graphene-oxide (rGO) a potentially useful material for creating a variety of electronic components (resistors, diodes, transistors) directly on the printed circuits. Laser microfabrication techniques can also be used to imprint nano/micro-scaled patterns on the conductive films, modify the local optical characteristics, or remove excess film and substrate material. Functional materials, advanced manufacturing, and biomedical technologies are all recognized by NSERC as strategic areas that will benefit our country's economy and improve the quality of life for all Canadians. The long-term goal of this research program is to advance the design strategies and fabrication methods used to create the next generation of mechanically flexible, stretchable bioelectronic devices and bio-integrated systems. Success will depend on fundamental studies of the mechanical, electrical and optical characteristics of inkjet-printed electrodes and circuits, and the ability of laser microfabrication to locally alter these properties. The specific research objectives over the next five years are to: (O1) investigate drop-on-demand fabrication and laser micromachining methods to print and locally "tune" the electrical, optical and mechanical properties of graphene-based microstructures; (O2) exploit the principles of mechanical design to enhance the functionality (electrical & optical properties) and stretchability of electrodes and interconnects printed on various flexible substrates (polymers, paper, textiles); (O3) establish methods and guidelines for bio-functionalizing mechanically flexible printed circuits; and (O4) explore innovative applications of printed flexible bioelectronic and optoelectronic circuitry in patient health monitoring, wearable body sensors, smart food packaging, and large area imaging.
生物电子学和微光学是新兴技术,将对医疗保健和医药、食品安全监测、智能包装、可穿戴传感器和公共安全的未来产生重大影响。生物电子学涉及将功能性生物材料与微电极、光电传感器和半导体器件相连接。多种催化剂(酶)、生物分子(蛋白质、脂质、核酸)、微生物和神经细胞可用于提供高效的分子识别和结合能力。附着在生物组织、植物、薄人造膜和纺织品上的电子和光电电路也应该具有机械柔性,以便设备可以符合底层物体的形状。导电油墨(PEDOT:PSS、Au、Ag)的最新进展鼓励研究人员探索按需滴印技术作为在各种可弯曲和可拉伸基板上创建互连和电极的可行方法。印刷技术还能够在微电路表面上分配皮升的透明热塑性液滴,以制造波导、微透镜和光子结构。 西方的初步研究表明,导电石墨烯和石墨烯氧化物(GO)可以从廉价的石墨粉末合成,并分散在溶剂中形成可打印的墨水。一旦GO油墨沉积在基底上,就可以通过使用激光诱导加热的热还原来部分恢复电导率。这种“可调带隙”使得热还原氧化石墨烯(rGO)成为直接在印刷电路上制造各种电子元件(电阻器,二极管,晶体管)的潜在有用材料。激光微加工技术也可用于在导电膜上压印纳米/微米尺度的图案,修改局部光学特性,或去除多余的膜和基底材料。功能材料、先进制造和生物医学技术都被NSERC认定为有利于我国经济和改善所有加拿大人生活质量的战略领域。该研究计划的长期目标是推进用于创建下一代机械柔性,可拉伸生物电子器件和生物集成系统的设计策略和制造方法。成功将取决于对喷墨印刷电极和电路的机械、电气和光学特性的基础研究,以及激光微加工局部改变这些特性的能力。未来五年的具体研究目标是:(O 1)研究按需制造和激光微加工方法,以打印和局部“调整”石墨烯基微结构的电气,光学和机械性能;(O2)利用机械设计原理增强功能印刷在各种柔性基板上的电极和互连的(电学和光学特性)和可拉伸性(O3)为机械柔性印刷电路的生物功能化建立方法和指南;以及(O 4)探索印刷柔性生物电子和光电电路在患者健康监测、可穿戴身体传感器智能食品包装和大面积成像。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Knopf, George其他文献

Knopf, George的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Knopf, George', 18)}}的其他基金

Degradable Carbon-based Printed Electronic Sensors and Microdevices
可降解碳基印刷电子传感器和微型设备
  • 批准号:
    RGPIN-2022-04797
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Flexible bioelectronics and micro-optical systems
灵活的生物电子学和微光学系统
  • 批准号:
    RGPIN-2014-05858
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Flexible bioelectronics and micro-optical systems
灵活的生物电子学和微光学系统
  • 批准号:
    RGPIN-2014-05858
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Flexible bioelectronics and micro-optical systems
灵活的生物电子学和微光学系统
  • 批准号:
    RGPIN-2014-05858
  • 财政年份:
    2016
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Flexible bioelectronics and micro-optical systems
灵活的生物电子学和微光学系统
  • 批准号:
    RGPIN-2014-05858
  • 财政年份:
    2014
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent systems for interactive design, modeling and visualization
用于交互设计、建模和可视化的智能系统
  • 批准号:
    155127-2006
  • 财政年份:
    2013
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
"NSERC/UNENE Industrial Research Chair in Control, Instrumentation and Electrical Systems in Nuclear Power Plants"
“NSERC/UNENE 核电厂控制、仪表和电气系统工业研究主席”
  • 批准号:
    306142-2007
  • 财政年份:
    2012
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Industrial Research Chairs
Intelligent systems for interactive design, modeling and visualization
用于交互设计、建模和可视化的智能系统
  • 批准号:
    155127-2006
  • 财政年份:
    2012
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent systems for interactive design, modeling and visualization
用于交互设计、建模和可视化的智能系统
  • 批准号:
    155127-2006
  • 财政年份:
    2011
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
"NSERC/UNENE Industrial Research Chair in Control, Instrumentation and Electrical Systems in Nuclear Power Plants"
“NSERC/UNENE 核电厂控制、仪表和电气系统工业研究主席”
  • 批准号:
    306142-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Industrial Research Chairs

相似海外基金

CAREER: Multisensory Soft Bioelectronics for Comprehensive Monitoring of Gastrointestinal Physiological Interplay
职业:用于全面监测胃肠道生理相互作用的多感官软生物电子学
  • 批准号:
    2339495
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Continuing Grant
Quinoid Polymers for Organic Electrochemical Transistors and Bioelectronics
用于有机电化学晶体管和生物电子学的醌型聚合物
  • 批准号:
    DE240101231
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Early Career Researcher Award
Advancing bioelectronics with silicon carbide on microfluidics
利用碳化硅微流体技术推进生物电子学
  • 批准号:
    DE240100408
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Early Career Researcher Award
Northwestern University O'Brien Kidney National Resource Center
西北大学奥布莱恩肾脏国家资源中心
  • 批准号:
    10754080
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Nanoparticle Coated Microelectrode Arrays for Electrochemically Controlled Gene Editing at the Electrode Site
用于电极位点电化学控制基因编辑的纳米颗粒涂层微电极阵列
  • 批准号:
    10604904
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Soft wireless multimodal cardiac implantable devices for long-term investigating heart failure pathogenesis
用于长期研究心力衰竭发病机制的软无线多模式心脏植入装置
  • 批准号:
    10735395
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Multifunctional Intelligent Hierarchical Fibrous Biomaterials Integrated with Multimodal Biosensing and Feedback-Based Interventions for Healing Infected Chronic Wounds
多功能智能分层纤维生物材料与多模式生物传感和基于反馈的干预措施相结合,用于治愈感染的慢性伤口
  • 批准号:
    10861531
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Bioelectric monitoring and neuromodulation of the heart
心脏的生物电监测和神经调节
  • 批准号:
    10655997
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Brain neural networks regulating inflammation
调节炎症的脑神经网络
  • 批准号:
    10718412
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Organic Bioelectronics: Solving Key Barriers to Precision Neuromodulation
有机生物电子学:解决精准神经调节的关键障碍
  • 批准号:
    DP230102705
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了