Thermal-Hydraulics and Energy Systems
热工水力和能源系统
基本信息
- 批准号:RGPIN-2014-05970
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
World energy demand will rise by 45% in 2030; however, current trends in energy supply and consumption don’t satisfy environmental sustainability. Thus, maintaining economy growth and acceptable social standards, necessitates efficient energy conversion techniques. Objectives of this proposal are committed to lie on top of these requirements throughout three themes. i) Study the behaviour of water at supercritical conditions: Ten countries are collaborating (Generation-IV International Forum) to develop nuclear reactors for replacing present technologies, their main characteristics are: competitiveness, sustainability, safety and resistance to proliferation. Canada is involved on the design of a Supercritical Water-cooled Reactor (SCWR). However, the thermalhydraulics of water beyond its critical point is still unclear. Support from NSERC/NRCan/AECL and Hydro-Québec has made possible the construction of a 750 kW supercritical water loop at École Polytechnique. This loop (unique in Canada) will be used to perform supercritical water (SW) pressure drop and forced convective heat transfer experiments. Test sections will be manufactured from Hastelloy C-276 to study supercritical flows under deteriorated heat transfer regimes. These data is mandatory for designing components of SCWR’s. Long-term objectives will involve modeling thermalhydraulics behaviour of SW. ii) Study CANDU moderator flow instabilities: CANDU reactors are one of the safest systems that contribute decreasing greenhouse emissions with low environmental impact. Nevertheless, since 1980, simulations indicated the existence of moderator flow instabilities. It is possible that they are triggered by competition between density driven momentum and inertia coupled to heat transfer and neutron flux distributions. Due to computational limitations, past simulations were performed using a distributed porosity model approach. This technique limits calculations to correctly represent the physics of the problem. In fact, 380 fuel channels in the calandria (approx. 6 m x 6 m cylinder), jointly with small water injectors of few cm, makes the numerical problem quite complex. Simulations based on 2D Navier-Stokes equations necessitate at least 3.5 million elements. In this project, we will implement a 3D CFD model to be solved with the Québec high performance computing network using “Code-Saturne” software and 100 million elements. CFD simulations will be coupled with neutron simulations. Numerical data will permit us to understand the phenomena and characterize the flow based on dimensionless numbers. In long-term, valuable models for the nuclear industry will be developed. iii) Exergy modeling and optimization of integrated energy systems: Environmental impact of energy consumption decreases with increasing performance of energy conversion units. Better use of energy resources can be achieved by integrating different sources and technologies. Integration increases the difficulty to determine optimal equipment operation that must satisfy external constrains (weather.) System analyses cannot be performed using only the first law of thermodynamics. In a short-term, first and second laws (exergy) will be applied to create models and optimization tools. Matrix and graphic representations of distributed exergy sources and destruction sinks in integrated systems will be developed. In a long-term, superstructure matrix implementations within stochastic algorithms will be used for optimization. We have more than 30 years of experience working in nuclear and conventional energy areas. Outcomes from this program should have direct impact on nuclear, thermal, solar and geothermal technologies, and thus contribute to the industrial and economical wellbeing of Canada.
到2030年,世界能源需求将增长45%;然而,目前的能源供应和消费趋势并不能满足环境的可持续性。因此,维持经济增长和可接受的社会标准需要有效的能源转换技术。本提案的目标致力于贯穿三个主题,以这些要求为基础。i)研究超临界条件下水的行为:十个国家正在合作(第四代国际论坛)开发核反应堆以取代现有技术,其主要特点是:竞争力、可持续性、安全性和防扩散。加拿大参与了一个超临界水冷堆(SCWR)的设计。然而,超过临界点的水的热工力学仍然不清楚。在NSERC/NRCan/AECL和hydro - qubec的支持下,在École Polytechnique建造了一个750千瓦的超临界水回路。该回路(在加拿大独一无二)将用于进行超临界水(SW)压降和强制对流换热实验。测试部分将由哈氏合金C-276制造,用于研究变质传热制度下的超临界流动。这些数据对于设计循环水堆的部件是必需的。长期目标将包括模拟SW的热工特性。(2)研究CANDU慢化剂流动的不稳定性:CANDU反应堆是减少温室气体排放且对环境影响小的最安全系统之一。然而,自1980年以来,模拟表明存在缓和流动不稳定性。它们可能是由密度驱动的动量和惯性与传热和中子通量分布耦合的竞争引起的。由于计算限制,过去的模拟使用分布式孔隙度模型方法进行。这种技术限制了计算,不能正确地表示问题的物理性质。事实上,陆地上大约有380个燃料通道。6米× 6米圆柱体),再加上几厘米的小注水器,使得数值问题相当复杂。基于二维Navier-Stokes方程的模拟至少需要350万个元素。在本项目中,我们将使用“Code-Saturne”软件和1亿元,实现一个三维CFD模型,并使用quamesbec高性能计算网络进行求解。CFD模拟将与中子模拟相结合。数值数据将使我们能够理解基于无因次数的流的现象和特征。从长远来看,将为核工业开发出有价值的模式。3)综合能源系统的能源建模和优化:能源消耗对环境的影响随着能源转换装置性能的提高而降低。通过整合不同的能源和技术,可以更好地利用能源。集成增加了确定必须满足外部约束(天气)的最佳设备运行的难度。系统分析不能只用热力学第一定律来进行。在短期内,第一和第二定律(火能)将被应用于创建模型和优化工具。将开发综合系统中分布式火用源和破坏汇的矩阵和图形表示。从长远来看,随机算法中的上层结构矩阵实现将用于优化。我们在核能和常规能源领域有30多年的工作经验。该项目的成果将对核能、热能、太阳能和地热技术产生直接影响,从而为加拿大的工业和经济福祉做出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Teyssedou, Alberto其他文献
Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point
- DOI:
10.1016/j.solener.2010.12.022 - 发表时间:
2011-05-01 - 期刊:
- 影响因子:6.7
- 作者:
Saloux, Etienne;Teyssedou, Alberto;Sorin, Mikhail - 通讯作者:
Sorin, Mikhail
Teyssedou, Alberto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Teyssedou, Alberto', 18)}}的其他基金
Thermal-Hydraulics and Energy Systems
热工水力和能源系统
- 批准号:
RGPIN-2014-05970 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Thermal-Hydraulics and Energy Systems
热工水力和能源系统
- 批准号:
RGPIN-2014-05970 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Modelling an Airborne Time-Domain Electromagnetic (TDEM) System using a Novel Integral Formulation
使用新型积分公式对机载时域电磁 (TDEM) 系统进行建模
- 批准号:
515291-2017 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Engage Grants Program
Thermal-Hydraulics and Energy Systems
热工水力和能源系统
- 批准号:
RGPIN-2014-05970 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Design, characterization and control of heat generation of an online Laser-Induced Breakdown Spectroscopy (LIBS) sorting process analyzer
在线激光诱导击穿光谱 (LIBS) 分选过程分析仪的设计、表征和发热控制
- 批准号:
478155-2015 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Engage Grants Program
Système novateur pour la production d'eau potable et de froid
饮用水和冷冻水生产创新系统
- 批准号:
470371-2014 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Engage Grants Program
Choking Flow in Supercritical Fluids
超临界流体中的窒息流
- 批准号:
424193-2011 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
NSERC/NRCan/AECL Generation IV Energy Technologies Program
Thermal-Hydraulics and Energy Systems
热工水力和能源系统
- 批准号:
RGPIN-2014-05970 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Boiling and two-phase flows
沸腾和两相流
- 批准号:
41929-2008 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Choking Flow in Supercritical Fluids
超临界流体中的窒息流
- 批准号:
424193-2011 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
NSERC/NRCan/AECL Generation IV Energy Technologies Program
相似海外基金
A SNARE-Aquaporin complex in stomatal hydraulics
气孔水力学中的 SNARE-水通道蛋白复合物
- 批准号:
BB/X013383/1 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant
Coarse-grid CFD for nuclear thermal hydraulics modelling
用于核热水力建模的粗网格 CFD
- 批准号:
2892392 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Studentship
Physics informed deep learning for fusion thermal hydraulics
物理学为聚变热工水力学提供深度学习
- 批准号:
2795824 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Studentship
Experimental Environmental Hydraulics: Turbulent Entrainment and Mixing
实验环境水力学:湍流夹带和混合
- 批准号:
RGPIN-2022-03438 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Experimental and Numerical Modelling of Air Entrainment in Eco-hydraulics
生态液压中空气夹带的实验和数值模拟
- 批准号:
RGPIN-2018-03994 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Fish Passage & Habitat: Turbulent Jets and Environmental Hydraulics
鱼道
- 批准号:
RGPIN-2016-05496 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Thermal-Hydraulics measurement and sensing techniques for Nuclear Applications
核应用的热工水力测量和传感技术
- 批准号:
2621996 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Studentship
Towards comprehensive multiphase flow modelling for nuclear reactor thermal hydraulics
核反应堆热工水力综合多相流建模
- 批准号:
EP/S019871/2 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Fellowship
Dynamics of Air/Water Two-phase Flows in Environmental Hydraulics
环境水力学中空气/水两相流的动力学
- 批准号:
RGPIN-2016-03818 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Experimental environmental hydraulics: entrainment and mixing in turbulent flows
实验环境水力学:湍流中的夹带和混合
- 批准号:
RGPIN-2016-04473 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual