Spatial clustering of spatial correlated data, multi-valued data, and domain-driven spatial clustering ensemble
空间相关数据的空间聚类、多值数据和领域驱动的空间聚类集成
基本信息
- 批准号:355996-2013
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Spatial clustering partitions similar data objects into the same group (called clusters) based on their distance, density and reachability in space. The primary goal of this study is to design, develop and improve a set of spatial clustering methods and processes that discover meaningful and useful clusters from large amounts of spatial correlated data, multi-valued spatial data and multi-featured spatial data. Specifically, the research will address the following spatial clustering problems: 1) Spatial correlation generally exists in spatial datasets. It indicates the dependency between the spatial and non-spatial attributes, with the chance that some cause and effect lead to it. The research will identify different unbiased measures of non-spatial attribute similarity and spatial correlation. Then the measures will be integrated into different clustering methods. 2) In many applications, the non-spatial attribute of a spatial object can be represented by a set of multiple values in the d-dimensional space. The object is called a multi-valued spatial object. How to discover the clusters of multi-valued spatial objects is a challenging task. One outcome of this research is to define different similarity measures for multi-valued spatial objects. Different spatial clustering methods will be developed based on the measures. 3) Most existing clustering algorithms do not consider the domain knowledge during the clustering process, which prevents users from precisely describing their goals and understanding the clustering results. In addition, for many applications, none of the current clustering methods is suitable due to the multiple features of the spatial data. Each clustering method may cluster the data from a particular feature or may be suitable for part of the spatial area. How to improve the clustering result for spatial data with multiple features with the aid of domain knowledge is an interesting research topic. This research will first study how to improve the spatial clustering ontology. The new domain-driven spatial cluster methods and cluster ensemble methods will then be proposed to combine multiple clustering results to produce useful and meaningful results.
空间聚类将相似的数据对象根据它们在空间中的距离、密度和可达性划分为同一组(称为聚类)。本研究的主要目标是设计、开发和改进一套空间聚类方法和过程,从大量的空间相关数据、多值空间数据和多特征空间数据中发现有意义和有用的聚类。具体而言,本研究将解决以下空间聚类问题:1)空间数据集普遍存在空间相关性。它表明了空间和非空间属性之间的依赖性,与一些原因和影响的机会导致它。研究将确定不同的无偏测量的非空间属性的相似性和空间相关性。然后将这些度量集成到不同的聚类方法中。2)在许多应用中,空间对象的非空间属性可以由d维空间中的多个值的集合来表示。该对象被称为多值空间对象。如何发现多值空间对象的簇是一个具有挑战性的任务。本研究的成果之一是定义不同的相似性措施,多值空间对象。将根据这些措施制定不同的空间聚类方法。3)现有的聚类算法在聚类过程中大多没有考虑领域知识,这使得用户无法准确地描述自己的目标和理解聚类结果。此外,对于许多应用程序,没有一个当前的聚类方法是合适的,由于空间数据的多个功能。每种聚类方法可以从特定特征聚类数据,或者可以适用于部分空间区域。如何利用领域知识提高多特征空间数据的聚类效果是一个值得研究的课题。本研究将首先研究如何改进空间聚类本体。新的领域驱动的空间聚类方法和集群集成方法,然后将提出联合收割机多个聚类结果,产生有用的和有意义的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wang, Xin其他文献
Preparation of lignin-based porous carbon with hierarchical oxygen-enriched structure for high-performance supercapacitors
- DOI:
10.1016/j.jcis.2019.01.058 - 发表时间:
2019-03-22 - 期刊:
- 影响因子:9.9
- 作者:
Chen, Weimin;Wang, Xin;Zhou, Xiaoyan - 通讯作者:
Zhou, Xiaoyan
A note on instanton effects in ABJM theory
ABJM理论中瞬子效应的注记
- DOI:
10.1007/jhep11(2014)100 - 发表时间:
2014-09 - 期刊:
- 影响因子:5.4
- 作者:
Wang, Xian-fu;Wang, Xin;Huang, Min-xin - 通讯作者:
Huang, Min-xin
Train duration and inter-train interval determine the direction and intensity of high-frequency rTMS after-effects.
- DOI:
10.3389/fnins.2023.1157080 - 发表时间:
2023 - 期刊:
- 影响因子:4.3
- 作者:
Jin, Jingna;Wang, Xin;Wang, He;Li, Ying;Liu, Zhipeng;Yin, Tao - 通讯作者:
Yin, Tao
Arabidopsis Floral Initiator SKB1 Confers High Salt Tolerance by Regulating Transcription and Pre-mRNA Splicing through Altering Histone H4R3 and Small Nuclear Ribonucleoprotein LSM4 Methylation
拟南芥花引发剂 SKB1 通过改变组蛋白 H4R3 和小核核糖核蛋白 LSM4 甲基化来调节转录和前 mRNA 剪接,从而赋予高盐耐受性
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:11.6
- 作者:
Bao, Shilai;Zhang, Shupei;Zhang, Ya;Wang, Xin;Li, Dan;Li, Qiuling;Yue, Minghui;Li, Qun;Zhang, Yu-e - 通讯作者:
Zhang, Yu-e
Catalytic hydrogenation of nitrophenols and nitrotoluenes over a palladium/graphene nanocomposite
钯/石墨烯纳米复合材料上硝基苯酚和硝基甲苯的催化氢化
- DOI:
10.1039/c4cy00048j - 发表时间:
2014-05 - 期刊:
- 影响因子:0
- 作者:
Fu, Yongsheng;He, Guangyu;Sun, Xiaoqiang;Wang, Xin - 通讯作者:
Wang, Xin
Wang, Xin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wang, Xin', 18)}}的其他基金
Personalized Location Recommendation on Location-Based Social Networks by Efficiently Utilizing Spatio-Temporal Information
有效利用时空信息的基于位置的社交网络的个性化位置推荐
- 批准号:
RGPIN-2018-03916 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Three-Dimensional Mixed-Mode Fracture Mechanics Methodologies for Structural Integrity Assessments of Welded Structures
用于焊接结构结构完整性评估的三维混合模式断裂力学方法
- 批准号:
RGPIN-2020-06550 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Personalized Location Recommendation on Location-Based Social Networks by Efficiently Utilizing Spatio-Temporal Information
有效利用时空信息的基于位置的社交网络的个性化位置推荐
- 批准号:
RGPIN-2018-03916 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Three-Dimensional Mixed-Mode Fracture Mechanics Methodologies for Structural Integrity Assessments of Welded Structures
用于焊接结构结构完整性评估的三维混合模式断裂力学方法
- 批准号:
RGPIN-2020-06550 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Personalized Location Recommendation on Location-Based Social Networks by Efficiently Utilizing Spatio-Temporal Information
有效利用时空信息的基于位置的社交网络的个性化位置推荐
- 批准号:
RGPIN-2018-03916 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Three-Dimensional Mixed-Mode Fracture Mechanics Methodologies for Structural Integrity Assessments of Welded Structures
用于焊接结构结构完整性评估的三维混合模式断裂力学方法
- 批准号:
RGPIN-2020-06550 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Fracture Mechanics Methodologies for Structural Integrity Assessments and Fatigue Life Predictions under Multi-axial Non-proportional Loading
多轴非比例载荷下结构完整性评估和疲劳寿命预测的断裂力学方法
- 批准号:
RGPIN-2015-03994 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Development of geospatial clustering methods for broadband seismic-facies analysis
宽带地震相分析的地理空间聚类方法的开发
- 批准号:
514549-2017 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Collaborative Research and Development Grants
Personalized Location Recommendation on Location-Based Social Networks by Efficiently Utilizing Spatio-Temporal Information
有效利用时空信息的基于位置的社交网络的个性化位置推荐
- 批准号:
RGPIN-2018-03916 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Development of geospatial clustering methods for broadband seismic-facies analysis
宽带地震相分析的地理空间聚类方法的开发
- 批准号:
514549-2017 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
铝合金中新型耐热合金相的应用基础研究
- 批准号:50801067
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
高维稀疏数据聚类研究
- 批准号:70771007
- 批准年份:2007
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
International cooperative study for spatial-temporal disease clustering and risk factors on emerging infectious diseases
新发传染病时空疾病聚集性及危险因素国际合作研究
- 批准号:
20KK0218 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Doctoral Dissertation Improvement Award: The Role Of Spatial Clustering In Group Organization
博士论文改进奖:空间聚类在群体组织中的作用
- 批准号:
1700734 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Spatial clustering of spatial correlated data, multi-valued data, and domain-driven spatial clustering ensemble
空间相关数据的空间聚类、多值数据和领域驱动的空间聚类集成
- 批准号:
355996-2013 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
The Impact of Spatial Clustering on the Labour Productivity of the UK Tourism and Hospitality Industry
空间集聚对英国旅游和酒店业劳动生产率的影响
- 批准号:
1947110 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Studentship
Spatial clustering of spatial correlated data, multi-valued data, and domain-driven spatial clustering ensemble
空间相关数据的空间聚类、多值数据和领域驱动的空间聚类集成
- 批准号:
355996-2013 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Advanced spatial data clustering algorithms research
先进空间数据聚类算法研究
- 批准号:
402014-2010 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Industrial R&D Fellowships (IRDF)
Spatial optimization of T cell activation at inflamed sites via cytokine/chemokine-dependent cellular clustering
通过细胞因子/趋化因子依赖性细胞聚类对炎症部位 T 细胞激活进行空间优化
- 批准号:
10241369 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Spatial optimization of T cell activation at inflamed sites via cytokine/chemokine-dependent cellular clustering
通过细胞因子/趋化因子依赖性细胞聚类对炎症部位 T 细胞激活进行空间优化
- 批准号:
10477325 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Spatial clustering of spatial correlated data, multi-valued data, and domain-driven spatial clustering ensemble
空间相关数据的空间聚类、多值数据和领域驱动的空间聚类集成
- 批准号:
355996-2013 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Spatial optimization of T cell activation at inflamed sites via cytokine/chemokine-dependent cellular clustering
通过细胞因子/趋化因子依赖性细胞聚类对炎症部位 T 细胞激活进行空间优化
- 批准号:
10689180 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别: