Ideals of graphs, graph orientations, and crossing numbers of graphs
图的理想、图的方向和图的交叉数
基本信息
- 批准号:RGPIN-2014-03750
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal concerns basic research in theoretical mathematics, particularly in the area of graph theory. There are three principal aspects: minor-closed sets of graphs, orientations of graphs, and crossing numbers of graphs.
The famous Graph Minor Theorem of Robertson and Seymour asserts that the set of all graphs is well quasi-ordered under the minor operation. Nash-Williams proved a much stronger result about trees, which implies that minor-closed sets of trees are also well quasi-ordered under inclusion. A major goal of this project is to prove that minor-closed sets of graphs with bounded tree-width are well quasi-ordered under inclusion.
Tutte conjectured that every 4-edge-connected graph has an orientation of its edges so that, for each vertex v, the number of directed edges pointing in to v is congruent (mod 3) to the number of directed edges pointing out from v. Thomassen proved a generalization of this with 4-edge-connected replaced by 8-edge-connected. Lovasz et al improved the generalization to 6-edge-connected graphs and Lai showed it false for 4-edge-connected planar graphs. With Thomassen and Younger, we proved it for 5-edge-connected planar graphs. A major goal is to prove that Thomassen's generalization holds for all 5-edge-connected graphs; this would imply Tutte's conjecture is true.
The crossing number cr(G) of a graph G is the fewest number of pairwise crossings of G among all drawings of G in the plane. The crossing number of the complete graph K(n) with n vertices is not yet known. There is a long-standing conjecture for the value of cr(K(n)), but this has been verified (by computer) only through n=12. (A simple counting argument shows that the smallest counterexample will have n odd.) We have recently found a computer-free proof that cr(K(9)) is 36. A long-term goal is to develop these techniques to determine the crossing number of K(n).
The research is motivated in part by foundational issues that arise in real-world topics, such as circuit design and reliability of networks, but is more concerned with issues of interest to theoretical computer scientists and mathematicians. Its principal purpose is to advance our fundamental knowledge of graph theory and its relationship to topology.
这一建议涉及理论数学的基础研究,特别是在图论领域。有三个主要方面:图的小闭集、图的方向和图的交叉数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richter, Bruce其他文献
Richter, Bruce的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richter, Bruce', 18)}}的其他基金
Crossing Numbers of Graphs, List Colourings of Graphs, Flows in Graphs
图形的交叉数、图形的列表着色、图形中的流
- 批准号:
RGPIN-2019-04156 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Crossing Numbers of Graphs, List Colourings of Graphs, Flows in Graphs
图形的交叉数、图形的列表着色、图形中的流
- 批准号:
RGPIN-2019-04156 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Crossing Numbers of Graphs, List Colourings of Graphs, Flows in Graphs
图形的交叉数、图形的列表着色、图形中的流
- 批准号:
RGPIN-2019-04156 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Crossing Numbers of Graphs, List Colourings of Graphs, Flows in Graphs
图形的交叉数、图形的列表着色、图形中的流
- 批准号:
RGPIN-2019-04156 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Ideals of graphs, graph orientations, and crossing numbers of graphs
图的理想、图的方向和图的交叉数
- 批准号:
RGPIN-2014-03750 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Ideals of graphs, graph orientations, and crossing numbers of graphs
图的理想、图的方向和图的交叉数
- 批准号:
RGPIN-2014-03750 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Ideals of graphs, graph orientations, and crossing numbers of graphs
图的理想、图的方向和图的交叉数
- 批准号:
RGPIN-2014-03750 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Ideals of graphs, graph orientations, and crossing numbers of graphs
图的理想、图的方向和图的交叉数
- 批准号:
RGPIN-2014-03750 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Topological generalizations of graphs
图的拓扑推广
- 批准号:
41705-2009 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Topological generalizations of graphs
图的拓扑推广
- 批准号:
41705-2009 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
不完备信息下基于流向图的诊断知识获取理论与方法
- 批准号:51175102
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
线性码、群码和格的trellis研究
- 批准号:60772131
- 批准年份:2007
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Next-Generation Distributed Graph Engine for Big Graphs
适用于大图的下一代分布式图引擎
- 批准号:
DP240101322 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Projects
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Research Grant
Efficient and accurate scaling Graph Neural Networks for giant graphs
针对巨型图的高效、准确的缩放图神经网络
- 批准号:
24K20787 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The construction and utility of reference pan-genome graphs
参考泛基因组图的构建和利用
- 批准号:
10777673 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Representing structural haplotypes and complex genetic variation in pan-genome graphs
表示泛基因组图中的结构单倍型和复杂的遗传变异
- 批准号:
10832934 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Effective, efficient and scalable processing of the graph of graphs
对图的图进行有效、高效且可扩展的处理
- 批准号:
LP210301046 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Linkage Projects
Evaluating the utility of cis-regulatory element graphs for modeling gene regulation
评估顺式调控元件图在基因调控建模中的效用
- 批准号:
10776793 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Research and development of an adverse outcome pathway-focused mechanistic inference tool for 'omics data using semantic knowledge graphs
使用语义知识图研究和开发针对“组学数据”的以不良结果途径为中心的机械推理工具
- 批准号:
10761637 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
CAREER: Inference with graphs: density skeleton and Markov missing graph
职业:图推理:密度骨架和马尔可夫缺失图
- 批准号:
2141808 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
Geometry and Asymptotics of Schubert Polynomials, Graph Colorings, and Flows on Graphs
舒伯特多项式的几何和渐近、图着色和图流
- 批准号:
2154019 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant