Cellular Integration of Physical Cues in the Microenvironment
微环境中物理信号的细胞整合
基本信息
- 批准号:RGPIN-2014-04978
- 负责人:
- 金额:$ 5.17万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the body, our cells are constantly subjected to mechanical forces arising from many sources. This can include the expansion of our lungs, the beating of our heart, our blood flow and the contraction of our muscles as we move. Furthermore, the mechanical properties of our organs and tissues (such as stiffness) can have a profound effect on the functioning and development of our bodies. The mechanical stiffness of the cellular environment influences many diverse processes in the body, such as stem cell fate, cell growth and death, the formation of new muscle tissue and even the spread of cancer or the progression of heart disease. Importantly, in the body, cells can be simultaneously exposed to rapid changes in stiffness as well as the effects of compression and stretch. Although it has become well appreciated that cells are sensitive to mechanical cues in their local environment, the exact mechanisms cells use to sense and respond to physical information remain poorly understood. However, because these sensing abilities are so crucial our development, growth and well being, it is imperative to understand how they operate. In this research program, we will delve into the physical and molecular mechanisms that govern the ability of a cell to sense and respond to mechanical cues in its environment. Utilizing state of the art biophysical and genetic approaches we will develop a mechanistic understanding of the earliest response of a cell to physical forces in real time. We have also developed techniques that will allow us to examine how cells respond to the simultaneous exposure to deformation and changes in the stiffness of their environment. Employing highly interdisciplinary life and physical science training and methodologies, we will be able to address these fundamental questions in cell biology. Exploiting the sensitivity of cells to physical forces and mechanical properties has already been proposed as means to control stem cell fate or precondition therapeutic cells for transplantation. Alternatively, measuring changes in the physical properties of cells is thought to be a viable means of detecting cancerous cells in the body and bloodstream. Therefore, enhancing our fundamental knowledge about the mechanical aspects of cell biology has the potential to direct the development of future medical detection and treatments of disease. Importantly, the Pelling Lab, at the University of Ottawa, has already contributed fundamental new knowledge that has found potential applications in some of these areas. The new knowledge generated by the Pelling Lab may impact Canadians through the development of next generation healthcare detection and treatment technologies. This research program will train the next generation of Canadian highly qualified personnel (HQP) to develop exciting and revolutionary new knowledge with many potential applications. HQP will receive training in advanced cell/molecular biology, advanced microscopy, quantitative analysis, computer programming, 3D printing, microfabrication, device design, construction and prototyping. HQP will work and collaborate within an interdisciplinary laboratory, gaining highly transferable skills for later careers in academia or industry. HQP who are fluent in the languages of biology and physics are central to the objectives of this research program as well as any eventual downstream applications of this work. HQP who have been trained in the Pelling Lab have gone on to diverse careers that have directly impacted Canada’s knowledge based economy in the energy, automobile, healthcare and bioscience industries.
在体内,我们的细胞不断受到来自许多来源的机械力的影响。这可能包括我们的肺的扩张,我们的心脏的跳动,我们的血液流动和我们运动时肌肉的收缩。此外,我们的器官和组织的机械特性(如硬度)可以对我们身体的功能和发育产生深远的影响。细胞环境的机械刚度影响体内许多不同的过程,例如干细胞命运,细胞生长和死亡,新肌肉组织的形成,甚至癌症的扩散或心脏病的进展。重要的是,在体内,细胞可以同时暴露于刚度的快速变化以及压缩和拉伸的影响。尽管人们已经很好地认识到细胞对局部环境中的机械信号很敏感,但细胞用来感知和响应物理信息的确切机制仍然知之甚少。然而,由于这些感知能力对我们的发展,成长和健康至关重要,因此必须了解它们如何运作。在这项研究计划中,我们将深入研究控制细胞感知和响应环境中机械提示的能力的物理和分子机制。利用最先进的生物物理学和遗传学方法,我们将开发一个机械的理解细胞的最早反应的物理力量在真实的时间。我们还开发了一些技术,使我们能够研究细胞如何对同时暴露于变形和环境刚度变化的反应。采用高度跨学科的生命和物理科学培训和方法,我们将能够解决细胞生物学中的这些基本问题。已经提出利用细胞对物理力和机械性质的敏感性作为控制干细胞命运或预处理用于移植的治疗性细胞的手段。或者,测量细胞物理特性的变化被认为是检测身体和血液中癌细胞的可行方法。因此,提高我们对细胞生物学机械方面的基础知识,有可能指导未来医学检测和疾病治疗的发展。重要的是,渥太华大学的Pelling实验室已经贡献了基础新知识,在其中一些领域找到了潜在的应用。Pelling实验室产生的新知识可能会通过下一代医疗检测和治疗技术的发展影响加拿大人。该研究计划将培养下一代加拿大高素质人才(HQP),以开发具有许多潜在应用的令人兴奋和革命性的新知识。HQP将接受先进细胞/分子生物学,先进显微镜,定量分析,计算机编程,3D打印,微制造,设备设计,建造和原型设计的培训。HQP将在跨学科实验室内工作和合作,为学术界或工业界的未来职业生涯获得高度可转移的技能。精通生物学和物理学语言的HQP是这项研究计划的目标以及这项工作的任何最终下游应用的核心。在Pelling Lab接受过培训的HQP从事了各种职业,这些职业直接影响了加拿大能源,汽车,医疗保健和生物科学行业的知识经济。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pelling, Andrew其他文献
Mechanical mismatch between Ras transformed and untransformed epithelial cells
- DOI:
10.1039/c7sm01396e - 发表时间:
2017-12-07 - 期刊:
- 影响因子:3.4
- 作者:
Gullekson, Corinne;Cojoc, Gheorghe;Pelling, Andrew - 通讯作者:
Pelling, Andrew
Pelling, Andrew的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pelling, Andrew', 18)}}的其他基金
The Mechanobiology of 2D and 3D Multicellular Systems
2D 和 3D 多细胞系统的力学生物学
- 批准号:
RGPIN-2019-05731 - 财政年份:2022
- 资助金额:
$ 5.17万 - 项目类别:
Discovery Grants Program - Individual
Plant based resin for industrial coating applications
用于工业涂料应用的植物基树脂
- 批准号:
571226-2022 - 财政年份:2021
- 资助金额:
$ 5.17万 - 项目类别:
Idea to Innovation
The Mechanobiology of 2D and 3D Multicellular Systems
2D 和 3D 多细胞系统的力学生物学
- 批准号:
RGPIN-2019-05731 - 财政年份:2021
- 资助金额:
$ 5.17万 - 项目类别:
Discovery Grants Program - Individual
The Mechanobiology of 2D and 3D Multicellular Systems
2D 和 3D 多细胞系统的力学生物学
- 批准号:
RGPIN-2019-05731 - 财政年份:2020
- 资助金额:
$ 5.17万 - 项目类别:
Discovery Grants Program - Individual
The Mechanobiology of 2D and 3D Multicellular Systems
2D 和 3D 多细胞系统的力学生物学
- 批准号:
RGPIN-2019-05731 - 财政年份:2019
- 资助金额:
$ 5.17万 - 项目类别:
Discovery Grants Program - Individual
Canada Research Chair in Experimental Cell Mechanics
加拿大实验细胞力学研究主席
- 批准号:
1000229071-2012 - 财政年份:2018
- 资助金额:
$ 5.17万 - 项目类别:
Canada Research Chairs
Cellular Integration of Physical Cues in the Microenvironment
微环境中物理信号的细胞整合
- 批准号:
RGPIN-2014-04978 - 财政年份:2018
- 资助金额:
$ 5.17万 - 项目类别:
Discovery Grants Program - Individual
Mechanoculture FX Optimization of Long Term 3D Cell Culture and Quantification
长期 3D 细胞培养和定量的机械培养 FX 优化
- 批准号:
530791-2018 - 财政年份:2018
- 资助金额:
$ 5.17万 - 项目类别:
Engage Grants Program
Canada Research Chair in Experimental Cell Mechanics
加拿大实验细胞力学研究主席
- 批准号:
1000229071-2012 - 财政年份:2017
- 资助金额:
$ 5.17万 - 项目类别:
Canada Research Chairs
相似海外基金
21st Century Prototyping: Improving product prototyping through the integration of physical and digital workflow
21 世纪原型制作:通过物理和数字工作流程的集成改进产品原型制作
- 批准号:
EP/W024152/1 - 财政年份:2023
- 资助金额:
$ 5.17万 - 项目类别:
Research Grant
Predicting 3D physical gene-enhancer interactions through integration of GTEx and 4DN data
通过整合 GTEx 和 4DN 数据预测 3D 物理基因增强子相互作用
- 批准号:
10776871 - 财政年份:2023
- 资助金额:
$ 5.17万 - 项目类别:
Implementing and Evaluating the Comprehensive Integration of Physical Activity into a Major Health System and Connecting Patients to Community-Based Physical Activity Programs
实施和评估将体育活动全面纳入主要卫生系统并将患者与基于社区的体育活动计划联系起来
- 批准号:
10705363 - 财政年份:2022
- 资助金额:
$ 5.17万 - 项目类别:
Large scale integration of EVs into the smart grid: A comprehensive cyber physical study and security assessment
电动汽车大规模融入智能电网:全面的网络物理研究和安全评估
- 批准号:
567144-2021 - 财政年份:2022
- 资助金额:
$ 5.17万 - 项目类别:
Alliance Grants
Error Correction in Mammalian Mitosis: Defining Physical Cues and Integration Mechanisms
哺乳动物有丝分裂中的错误纠正:定义物理线索和整合机制
- 批准号:
10313117 - 财政年份:2021
- 资助金额:
$ 5.17万 - 项目类别:
Larval dispersal capacity and realized connectivity: integration of physical transport models, larval plasticity, and gene flow in the north central Pacific
幼虫扩散能力和实现的连通性:中北部太平洋物理运输模型、幼虫可塑性和基因流的整合
- 批准号:
2049673 - 财政年份:2021
- 资助金额:
$ 5.17万 - 项目类别:
Standard Grant
Large scale integration of EVs into the smart grid: A comprehensive cyber physical study and security assessment
电动汽车大规模融入智能电网:全面的网络物理研究和安全评估
- 批准号:
567144-2021 - 财政年份:2021
- 资助金额:
$ 5.17万 - 项目类别:
Alliance Grants
Error Correction in Mammalian Mitosis: Defining Physical Cues and Integration Mechanisms
哺乳动物有丝分裂中的错误纠正:定义物理线索和整合机制
- 批准号:
10674003 - 财政年份:2021
- 资助金额:
$ 5.17万 - 项目类别:
Error Correction in Mammalian Mitosis: Defining Physical Cues and Integration Mechanisms
哺乳动物有丝分裂中的错误纠正:定义物理线索和整合机制
- 批准号:
10447001 - 财政年份:2021
- 资助金额:
$ 5.17万 - 项目类别:
Development of a system to analyze health and physical fitness and verification of the effectiveness of integration health and physical exercise programs.
开发一个系统来分析健康和身体素质,并验证整合健康和体育锻炼计划的有效性。
- 批准号:
21K02547 - 财政年份:2021
- 资助金额:
$ 5.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)