Quantum computing and cryptography
量子计算和密码学
基本信息
- 批准号:RGPIN-2014-05378
- 负责人:
- 金额:$ 4.52万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The early 20th century brought the creation of a new mathematical framework for physics, quantum mechanics. A broad array of physical theories has been developed within this new framework and tested with remarkable accuracy. By the end of the 20th century, scientists had achieved control over quantum phenomena with increasing precision. The degree to which quantum phenomena have been controlled to date is still rather limited in comparison with what we believe is possible. One of the greatest challenges of the 21st century will be to fully harness the power of quantum mechanics. We know that capitalizing on uniquely quantum phenomena, such as superposition and entanglement, will enable extraordinary leaps in technology enabling unbreakable cryptographic techniques, ultra-precise sensors, and powerful quantum computers that can solve some problems widely believed to be intractable on conventional “classical” devices. Just as scientists in the 1940s had very little idea about the applications and impact computers would have on society, we have likely only scratched the surface of the capabilities of this new form of information processing.
My proposed research program covers two interconnected themes.
The first theme supports the long-term vision of using quantum computers to solve important problems that are intractable using the best-known classical solutions. We will explore fertile territory for finding new quantum algorithmic tools including deep mathematical problems underlying some important cryptographic schemes. We will also explore a rich set of challenges underlying the efficient translation of high-level quantum algorithms into realistic computing systems.
New quantum algorithms, new applications, and their efficient implementations, will broaden and deepen the effectiveness of quantum computers at solving important computational problems we otherwise could not solve. We are also sowing the seeds for a future “quantum software” industry, which is needed in order to control and operate the growing array of quantum devices.
The second theme supports the long-term vision of deploying the next-generation cryptographic infrastructure that will be secure against quantum attacks. In a future with quantum computing technologies, being “quantum-safe” is a necessary part of being cyber-safe. Our work includes finding new applications of quantum technologies for ultra-secure cryptography and security applications. Developing quantum algorithms is a necessary part of designing classical cryptographic tools safe against what we believe are feasible quantum or classical attacks. These two families of tools work alongside each other to provide a range of features to cryptography solution seekers. Our work includes developing useful hybrid applications of quantum and classical cryptographic tools, and the integration and migration of quantum-safe cryptographic tools into the deployed cryptography infrastructure. We will continue to train next-generation cryptographers ready to develop, deploy and use quantum-safe cryptographic tools, in collaboration with partners in industry and government, including international standards organizations.
This research program will tackle deep mathematical and computing challenges at the core of harnessing quantum physics to solve important computational and cryptographic problems. Students and postdoctoral researchers will acquire deep technical skills and knowledge as they make new discoveries and find ways to apply them to solve important problems. They will understand the potential uses of their knowledge and skills in non-academic sectors, and gain experience communicating their work in quantum computing and cryptography, and its significance, to academia, government and industry.
世纪初,物理学建立了一个新的数学框架,即量子力学。在这个新的框架内,已经发展出了一系列广泛的物理理论,并以惊人的准确性进行了测试。到了世纪末,科学家们已经实现了对量子现象的控制,而且精度越来越高。到目前为止,量子现象被控制的程度与我们所相信的可能性相比仍然相当有限。世纪最大的挑战之一将是充分利用量子力学的力量。我们知道,利用独特的量子现象,如叠加和纠缠,将使技术实现非凡的飞跃,使牢不可破的密码技术,超精密传感器和强大的量子计算机能够解决一些被广泛认为是传统“经典”设备难以解决的问题。正如20世纪40年代的科学家对计算机的应用和对社会的影响知之甚少一样,我们可能只触及了这种新形式的信息处理能力的表面。
我的研究计划涵盖两个相互关联的主题。
第一个主题支持使用量子计算机来解决使用最着名的经典解决方案难以解决的重要问题的长期愿景。我们将探索寻找新的量子算法工具的肥沃土地,包括一些重要的加密方案背后的深层数学问题。我们还将探索一系列丰富的挑战,这些挑战是将高级量子算法有效转换为现实计算系统的基础。
新的量子算法、新的应用及其有效的实现,将扩大和深化量子计算机在解决我们无法解决的重要计算问题方面的有效性。我们也在为未来的“量子软件”产业播下种子,这是控制和操作不断增长的量子设备阵列所必需的。
第二个主题支持部署下一代加密基础设施的长期愿景,该基础设施将能够抵御量子攻击。在量子计算技术的未来,“量子安全”是网络安全的必要组成部分。我们的工作包括寻找量子技术在超安全密码学和安全应用中的新应用。开发量子算法是设计经典密码工具的必要组成部分,可以抵御我们认为可行的量子或经典攻击。这两个工具系列相互配合,为密码学解决方案寻求者提供了一系列功能。我们的工作包括开发有用的量子和经典密码工具的混合应用程序,以及将量子安全密码工具集成和迁移到部署的密码基础设施中。我们将继续与包括国际标准组织在内的行业和政府合作伙伴合作,培训下一代密码学家,以开发、部署和使用量子安全密码工具。
该研究计划将解决深层次的数学和计算挑战,其核心是利用量子物理来解决重要的计算和加密问题。学生和博士后研究人员将获得深入的技术技能和知识,因为他们做出新的发现,并找到方法将其应用于解决重要问题。他们将了解他们的知识和技能在非学术领域的潜在用途,并获得将他们在量子计算和密码学方面的工作及其重要性传达给学术界,政府和工业界的经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mosca, Michele其他文献
Optimal quantum circuits for general phase estimation
- DOI:
10.1103/physrevlett.98.090501 - 发表时间:
2007-03-02 - 期刊:
- 影响因子:8.6
- 作者:
van Dam, Wim;D'Ariano, G. Mauro;Mosca, Michele - 通讯作者:
Mosca, Michele
Cybersecurity in an Era with Quantum Computers Will We Be Ready?
- DOI:
10.1109/msp.2018.3761723 - 发表时间:
2018-09-01 - 期刊:
- 影响因子:1.9
- 作者:
Mosca, Michele - 通讯作者:
Mosca, Michele
Quantum circuit placement
- DOI:
10.1109/tcad.2008.917562 - 发表时间:
2008-04-01 - 期刊:
- 影响因子:2.9
- 作者:
Maslov, Dmitri;Falconer, Sean M.;Mosca, Michele - 通讯作者:
Mosca, Michele
On the controlled-NOT complexity of controlled-NOT-phase circuits
- DOI:
10.1088/2058-9565/aad8ca - 发表时间:
2019-01-01 - 期刊:
- 影响因子:6.7
- 作者:
Amy, Matthew;Azimzadeh, Parsiad;Mosca, Michele - 通讯作者:
Mosca, Michele
Simulating Quantum Systems Using Real Hilbert Spaces
- DOI:
10.1103/physrevlett.102.020505 - 发表时间:
2009-01-16 - 期刊:
- 影响因子:8.6
- 作者:
McKague, Matthew;Mosca, Michele;Gisin, Nicolas - 通讯作者:
Gisin, Nicolas
Mosca, Michele的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mosca, Michele', 18)}}的其他基金
Quantum computing and cryptography
量子计算和密码学
- 批准号:
RGPIN-2020-04862 - 财政年份:2022
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
Canada-UK Quantum Technologies call: Building a standardised quantum-safe networking architecture
加拿大-英国量子技术公司呼吁:建立标准化的量子安全网络架构
- 批准号:
556330-2020 - 财政年份:2021
- 资助金额:
$ 4.52万 - 项目类别:
Alliance Grants
Enhancement of magnetic resonance techniques using quantum algorithms
使用量子算法增强磁共振技术
- 批准号:
560574-2021 - 财政年份:2021
- 资助金额:
$ 4.52万 - 项目类别:
Idea to Innovation
Quantum computing and cryptography
量子计算和密码学
- 批准号:
RGPIN-2020-04862 - 财政年份:2021
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
Quantum computing and cryptography
量子计算和密码学
- 批准号:
RGPIN-2020-04862 - 财政年份:2020
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
Canada-UK Quantum Technologies call: Building a standardised quantum-safe networking architecture
加拿大-英国量子技术公司呼吁:建立标准化的量子安全网络架构
- 批准号:
556330-2020 - 财政年份:2020
- 资助金额:
$ 4.52万 - 项目类别:
Alliance Grants
Quantum computing and cryptography
量子计算和密码学
- 批准号:
RGPIN-2014-05378 - 财政年份:2018
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
Development of new quantum circuits for simulating the electronic structure of OLED materials
开发用于模拟OLED材料电子结构的新型量子电路
- 批准号:
530170-2018 - 财政年份:2018
- 资助金额:
$ 4.52万 - 项目类别:
Engage Grants Program
Quantum computing and cryptography
量子计算和密码学
- 批准号:
RGPIN-2014-05378 - 财政年份:2017
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
NSERC CREATE in Building a Workforce for the Cryptographic Infrstructure of the 21st century (BWCI-21)
NSERC CREATE 为 21 世纪的密码基础设施建设劳动力 (BWCI-21)
- 批准号:
414200-2012 - 财政年份:2017
- 资助金额:
$ 4.52万 - 项目类别:
Collaborative Research and Training Experience
相似国自然基金
普适计算环境下基于交互迁移与协作的智能人机交互研究
- 批准号:61003219
- 批准年份:2010
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
面向认知网络的自律计算模型及评价方法研究
- 批准号:60973027
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
普适环境下移动事务关键技术研究
- 批准号:60773089
- 批准年份:2007
- 资助金额:24.0 万元
- 项目类别:面上项目
量子信息资源理论与应用研究
- 批准号:60573008
- 批准年份:2005
- 资助金额:22.0 万元
- 项目类别:面上项目
网格环境下的协同工作理论与关键技术研究
- 批准号:90412009
- 批准年份:2004
- 资助金额:30.0 万元
- 项目类别:重大研究计划
相似海外基金
The limits of Quantum Computing: an approach via Post-Quantum Cryptography
量子计算的局限性:后量子密码学的方法
- 批准号:
EP/W02778X/2 - 财政年份:2023
- 资助金额:
$ 4.52万 - 项目类别:
Fellowship
Quantum computing and cryptography
量子计算和密码学
- 批准号:
RGPIN-2020-04862 - 财政年份:2022
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
The limits of Quantum Computing: an approach via Post-Quantum Cryptography
量子计算的局限性:后量子密码学的方法
- 批准号:
EP/W02778X/1 - 财政年份:2022
- 资助金额:
$ 4.52万 - 项目类别:
Fellowship
Computer Algebra, Quantum Computing and Post-Quantum Cryptography
计算机代数、量子计算和后量子密码学
- 批准号:
RGPAS-2021-00031 - 财政年份:2022
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Computer Algebra, Quantum Computing and Post-Quantum Cryptography
计算机代数、量子计算和后量子密码学
- 批准号:
RGPIN-2021-04223 - 财政年份:2022
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
Computer Algebra, Quantum Computing and Post-Quantum Cryptography
计算机代数、量子计算和后量子密码学
- 批准号:
RGPAS-2021-00031 - 财政年份:2021
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Computer Algebra, Quantum Computing and Post-Quantum Cryptography
计算机代数、量子计算和后量子密码学
- 批准号:
RGPIN-2021-04223 - 财政年份:2021
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
Computer Algebra, Quantum Computing and Post-Quantum Cryptography
计算机代数、量子计算和后量子密码学
- 批准号:
DGECR-2021-00319 - 财政年份:2021
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Launch Supplement
Quantum computing and cryptography
量子计算和密码学
- 批准号:
RGPIN-2020-04862 - 财政年份:2021
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
CAREER: The Role of Classical Cryptography in Quantum Computing
职业:经典密码学在量子计算中的作用
- 批准号:
2048204 - 财政年份:2021
- 资助金额:
$ 4.52万 - 项目类别:
Continuing Grant