Spectral geometry of the Dirichlet-to-Neumann map.
狄利克雷到诺依曼映射的谱几何。
基本信息
- 批准号:RGPIN-2015-04445
- 负责人:
- 金额:$ 1.38万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Spectral geometry is the study of the interplay between the geometry of a space and the eigenvalues of naturally occurring operators
on this space. The eigenvalues often correspond to natural frequencies of vibration, or to the energy levels of a quantum system. The golden age of spectral geometry started with the famous question proposed by M.Kac: “Can one hear the shape of a drum?” In 1992
C.Gordon, D.Webb and S.Wolpert gave a negative answer to this question by exhibiting two non-isometric planar domains with
exactly the same natural frequencies. This means that the geometry of a space is not completely determined by its spectrum.
Deciding which geometric quantities are spectrally determined is one of the main goal of spectral geometry. For instance, it is known
since the beginning of the XXth century that the volume of a bounded domain is spectrally determined (Weyl's law).
The spectral geometry of elliptic differential operators has been extensively investigated over the last century. The action of a
differential operator on a function depends only on its infinitesimal behavior. In contrast, pseudodifferential operators act globally.
They often arise as solution operators to partial differential equations, which makes them of a fundamental importance in the field of
inverse problems. Imagine for instance that an electrical potential is applied at the surface of a solid body. This produces a current
flux across its surface which depends on the interior conductivity of the body. Recovering the conductivity inside the body from current and voltage measurements at the surface is known as the Calderón inverse problem. Mathematically, the conductivity can be represented by a Riemannian metric and the voltage–to–current operator is known to mathematicians as the Dirichlet–to–Neumann (DtN) map. A deep understanding of this operator is essential in applications to electrical impedance tomography, which is used in medical imaging and in geophysical prospecting.
The spectral geometry of the Dirichlet-to-Neumann operator is developing rapidly, as the subject as attracted plenty of attention in the last few years. While our understanding improves rapidly, several new challenging problems also emerged. My research program is focused on three axes of investigation: geometric bounds for eigenvalues, spectral asymptotics, geometric spectral invariants, discretization and coarse geometry.
谱几何是研究空间几何与自然发生的算子的特征值之间的相互作用
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Girouard, Alexandre其他文献
Mathematical Proceedings of the Cambridge Philosophical Society
- DOI:
10.1017/s030500411400036x - 发表时间:
2014-11-01 - 期刊:
- 影响因子:0.8
- 作者:
Girouard, Alexandre;Parnovski, Leonid;Sher, David A. - 通讯作者:
Sher, David A.
CONTINUITY OF EIGENVALUES AND SHAPE OPTIMISATION FOR LAPLACE AND STEKLOV PROBLEMS
- DOI:
10.1007/s00039-021-00573-5 - 发表时间:
2021-08-13 - 期刊:
- 影响因子:2.2
- 作者:
Girouard, Alexandre;Karpukhin, Mikhail;Lagace, Jean - 通讯作者:
Lagace, Jean
Large spectral gaps for Steklov eigenvalues under volume constraints and under localized conformal deformations
- DOI:
10.1007/s10455-018-9612-6 - 发表时间:
2018-12-01 - 期刊:
- 影响因子:0.7
- 作者:
Cianci, Donato;Girouard, Alexandre - 通讯作者:
Girouard, Alexandre
Shape optimization for low Neumann and Steklov eigenvalues
- DOI:
10.1002/mma.1222 - 发表时间:
2010-03-15 - 期刊:
- 影响因子:2.9
- 作者:
Girouard, Alexandre;Polterovich, Iosif - 通讯作者:
Polterovich, Iosif
Spectral geometry of the Steklov problem (survey article)
- DOI:
10.4171/jst/164 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:1
- 作者:
Girouard, Alexandre;Polterovich, Iosif - 通讯作者:
Polterovich, Iosif
Girouard, Alexandre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Girouard, Alexandre', 18)}}的其他基金
Isoperimetry and spectral geometry
等周测量和光谱几何
- 批准号:
RGPIN-2022-04247 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Spectral geometry of the Dirichlet-to-Neumann map.
狄利克雷到诺依曼映射的谱几何。
- 批准号:
RGPIN-2015-04445 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Spectral geometry of the Dirichlet-to-Neumann map.
狄利克雷到诺依曼映射的谱几何。
- 批准号:
RGPIN-2015-04445 - 财政年份:2020
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Spectral geometry of the Dirichlet-to-Neumann map.
狄利克雷到诺依曼映射的谱几何。
- 批准号:
RGPIN-2015-04445 - 财政年份:2019
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Spectral geometry of the Dirichlet-to-Neumann map.
狄利克雷到诺依曼映射的谱几何。
- 批准号:
RGPIN-2015-04445 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Spectral geometry of the Dirichlet-to-Neumann map.
狄利克雷到诺依曼映射的谱几何。
- 批准号:
RGPIN-2015-04445 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Spectral geometry of the Dirichlet-to-Neumann map.
狄利克雷到诺依曼映射的谱几何。
- 批准号:
RGPIN-2015-04445 - 财政年份:2015
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
- 批准号:
2412346 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
- 批准号:
2342225 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Continuing Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Fellowship Award
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
- 批准号:
2333970 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Continuing Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Continuing Grant