Spectral geometry of the Dirichlet-to-Neumann map.

狄利克雷到诺依曼映射的谱几何。

基本信息

  • 批准号:
    RGPIN-2015-04445
  • 负责人:
  • 金额:
    $ 1.38万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Spectral geometry is the study of the interplay between the geometry of a space and the eigenvalues of naturally occurring operators***on this space. The eigenvalues often correspond to natural frequencies of vibration, or to the energy levels of a quantum system. The golden age of spectral geometry started with the famous question proposed by M.Kac: "Can one hear the shape of a drum?" In 1992 ***C.Gordon, D.Webb and S.Wolpert gave a negative answer to this question by exhibiting two non--isometric planar domains with ***exactly the same natural frequencies. This means that the geometry of a space is not completely determined by its spectrum. ***Deciding which geometric quantities are spectrally determined is one of the main goal of spectral geometry. For instance, it is known ***since the beginning of the XXth century that the volume of a bounded domain is spectrally determined (Weyl's law). ****The spectral geometry of elliptic differential operators has been extensively investigated over the last century. The action of a ***differential operator on a function depends only on its infinitesimal behavior. In contrast, pseudodifferential operators act globally. ***They often arise as solution operators to partial differential equations, which makes them of a fundamental importance in the field of ***inverse problems. Imagine for instance that an electrical potential is applied at the surface of a solid body. This produces a current ***flux across its surface which depends on the interior conductivity of the body. Recovering the conductivity inside the body from current and voltage measurements at the surface is known as the Calderón inverse problem. Mathematically, the conductivity can be represented by a Riemannian metric and the voltage-to-current operator is known to mathematicians as the Dirichlet-to-Neumann (DtN) map. A deep understanding of this operator is essential in applications to electrical impedance tomography, which is used in medical imaging and in geophysical prospecting. ***The spectral geometry of the Dirichlet-to-Neumann operator is developing rapidly, as the subject as attracted plenty of attention in the last few years. While our understanding improves rapidly, several new challenging problems also emerged. My research program is focused on three axes of investigation: geometric bounds for eigenvalues, spectral asymptotics, geometric spectral invariants, discretization and coarse geometry. *** **
谱几何是研究空间的几何和在这个空间上自然出现的算子 * 的特征值之间的相互作用。本征值通常对应于振动的自然频率,或量子系统的能级。光谱几何学的黄金时代始于M.Kac提出的著名问题:“人们能听到鼓的形状吗?1992年,C.Gordon、D.Webb和S.Wolpert对这个问题给出了否定的答案,他们展示了两个具有完全相同自然频率的非等距平面域。这意味着空间的几何形状并不完全由它的谱决定。* 确定哪些几何量是谱确定的是谱几何的主要目标之一。例如,它是已知的 * 自第二十世纪开始,一个有界域的体积是光谱确定(外尔定律)。* 椭圆型微分算子的谱几何在上个世纪得到了广泛的研究。一个 * 微分算子对一个函数的作用仅取决于它的无穷小行为。 相反,伪微分算子全局作用。* 它们经常作为偏微分方程的解算子出现,这使得它们在 * 反问题领域具有根本的重要性。例如,想象一个电势被施加在一个固体的表面。这就产生了一个通过其表面的电流通量,这取决于身体内部的导电性。从表面的电流和电压测量恢复体内的电导率被称为卡尔德龙逆问题。在数学上,电导率可以用黎曼度规表示,而电压到电流算子被数学家称为狄利克雷到诺依曼(Dirichlet-to-Neumann,DtN)映射。深入了解这个操作是必不可少的电阻抗断层成像,这是用于医学成像和地球物理勘探的应用。* Dirichlet-to-Neumann算子的谱几何发展迅速,在过去的几年里,这个主题吸引了大量的关注。在我们的认识迅速提高的同时,也出现了一些新的具有挑战性的问题。我的研究计划集中在三个方面:特征值的几何界限,谱渐近,几何谱不变量,离散化和粗糙几何。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Girouard, Alexandre其他文献

Mathematical Proceedings of the Cambridge Philosophical Society
CONTINUITY OF EIGENVALUES AND SHAPE OPTIMISATION FOR LAPLACE AND STEKLOV PROBLEMS
  • DOI:
    10.1007/s00039-021-00573-5
  • 发表时间:
    2021-08-13
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Girouard, Alexandre;Karpukhin, Mikhail;Lagace, Jean
  • 通讯作者:
    Lagace, Jean
Large spectral gaps for Steklov eigenvalues under volume constraints and under localized conformal deformations
  • DOI:
    10.1007/s10455-018-9612-6
  • 发表时间:
    2018-12-01
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Cianci, Donato;Girouard, Alexandre
  • 通讯作者:
    Girouard, Alexandre
Shape optimization for low Neumann and Steklov eigenvalues
Spectral geometry of the Steklov problem (survey article)
  • DOI:
    10.4171/jst/164
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Girouard, Alexandre;Polterovich, Iosif
  • 通讯作者:
    Polterovich, Iosif

Girouard, Alexandre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Girouard, Alexandre', 18)}}的其他基金

Isoperimetry and spectral geometry
等周测量和光谱几何
  • 批准号:
    RGPIN-2022-04247
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral geometry of the Dirichlet-to-Neumann map.
狄利克雷到诺依曼映射的谱几何。
  • 批准号:
    RGPIN-2015-04445
  • 财政年份:
    2021
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral geometry of the Dirichlet-to-Neumann map.
狄利克雷到诺依曼映射的谱几何。
  • 批准号:
    RGPIN-2015-04445
  • 财政年份:
    2020
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral geometry of the Dirichlet-to-Neumann map.
狄利克雷到诺依曼映射的谱几何。
  • 批准号:
    RGPIN-2015-04445
  • 财政年份:
    2018
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral geometry of the Dirichlet-to-Neumann map.
狄利克雷到诺依曼映射的谱几何。
  • 批准号:
    RGPIN-2015-04445
  • 财政年份:
    2017
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral geometry of the Dirichlet-to-Neumann map.
狄利克雷到诺依曼映射的谱几何。
  • 批准号:
    RGPIN-2015-04445
  • 财政年份:
    2016
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral geometry of the Dirichlet-to-Neumann map.
狄利克雷到诺依曼映射的谱几何。
  • 批准号:
    RGPIN-2015-04445
  • 财政年份:
    2015
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
PGSB
PGSB
  • 批准号:
    254529-2002
  • 财政年份:
    2003
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Postgraduate Scholarships
PGSB
PGSB
  • 批准号:
    254529-2002
  • 财政年份:
    2002
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Postgraduate Scholarships

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
  • 批准号:
    2412346
  • 财政年份:
    2024
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
Discrete Geometry and Convexity
离散几何和凸性
  • 批准号:
    2349045
  • 财政年份:
    2024
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
  • 批准号:
    2342225
  • 财政年份:
    2024
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Continuing Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
  • 批准号:
    2401164
  • 财政年份:
    2024
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
  • 批准号:
    2401472
  • 财政年份:
    2024
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
  • 批准号:
    2402099
  • 财政年份:
    2024
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Fellowship Award
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
  • 批准号:
    2333970
  • 财政年份:
    2024
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
  • 批准号:
    2340341
  • 财政年份:
    2024
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Continuing Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
  • 批准号:
    2340394
  • 财政年份:
    2024
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了