Bridging the Programmability Gap of Compute Accelerators

缩小计算加速器的可编程性差距

基本信息

  • 批准号:
    RGPIN-2015-05762
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

The past few years have seen increasing interest in compute accelerators—massively parallel devices that have the potential to deliver high performance at low power. This increasing interest is driven by the proliferation of smart phones and tablets, where users demand more functionality and longer battery life. It is also driven by the continual need to solve computationally intensive problems in many domains, such as big data processing, computational finance, environmental modeling, bioinformatics and physical design. This research focuses on two types of compute accelerators: Graphics Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs). A main hurdle preventing the wide spread use of compute accelerators is that software developers find them difficult to program. GPUs require developers to explore a host of program optimizations whose combined impact on performance and power is hard to predict. Developers often resort to an extensive exploration of possible combinations of the optimizations—a tedious and error prone process. Similarly, FPGAs demand hardware design expertise and have lengthy development cycles, which make them inaccessible to most software developers. These hurdles recognized by the scientific community and have been collectively referred to as the programmability gap of accelerators. They have been identified as the most outstanding problem facing these platforms today. The goal of the research in this proposal is to bridge this programmability gap through innovations in software, particularly in compilers and run-time support. Our work will have two main thrusts. In the first, we will investigate and build a compiler-based framework for automatically tuning GPU applications, i.e., for efficiently searching through the space of possible optimizations and selecting a combination that is best for performance and/or power. We will develop novel heuristics for this search and integrate them into our GPU compiler infrastructure to build the framework. In the second thrust we will explore and develop novel approaches to make it possible for software developers to use FPGAs without hardware design expertise and do so in a speedy manner. We will pursue an approach that enables an FPGA overlay—an FPGA circuit that is in itself configurable—that we developed to be customized for applications and to be transparently used through just-in-time compilation. Achieving the goals of our proposed research will enable the use of compute accelerators by more software developers. This will allow developers to build better performing applications that consume less energy on mobile devices. It will also enable scientists and engineers to better utilize these emerging platforms to solve their problems faster, enabling advances in their respective domains.
过去几年,人们对计算加速器(具有以低功耗提供高性能的潜力的大规模并行设备)的兴趣日益浓厚。这种日益增长的兴趣是由智能手机和平板电脑的普及推动的,用户需要更多的功能和更长的电池寿命。它还受到解决许多领域的计算密集型问题的持续需求的推动,例如大数据处理、计算金融、环境建模、生物信息学和物理设计。这项研究重点关注两种类型的计算加速器:图形处理单元 (GPU) 和现场可编程门阵列 (FPGA)。 阻碍计算加速器广泛使用的一个主要障碍是软件开发人员发现它们难以编程。 GPU 要求开发人员探索一系列程序优化,这些优化对性能和功耗的综合影响很难预测。开发人员经常对可能的优化组合进行广泛的探索——这是一个乏味且容易出错的过程。同样,FPGA 需要硬件设计专业知识,并且开发周期较长,这使得大多数软件开发人员无法使用它们。这些障碍得到了科学界的认可,并被统称为加速器的可编程性差距。它们被认为是当今这些平台面临的最突出的问题。 本提案中的研究目标是通过软件创新,特别是编译器和运行时支持方面的创新,弥补这一可编程性差距。我们的工作将有两个主要目标。首先,我们将研究并构建一个基于编译器的框架,用于自动调整 GPU 应用程序,即有效搜索可能的优化空间并选择最适合性能和/或功耗的组合。我们将为该搜索开发新颖的启发式方法,并将其集成到我们的 GPU 编译器基础设施中以构建框架。在第二个重点中,我们将探索和开发新颖的方法,使软件开发人员能够在没有硬件设计专业知识的情况下快速使用 FPGA。我们将寻求一种方法,使 FPGA 覆盖(一种本身可配置的 FPGA 电路)成为可能,我们开发的这种方法可以针对应用程序进行定制,并通过即时编译透明地使用。 实现我们提出的研究目标将使更多软件开发人员能够使用计算加速器。这将使开发人员能够构建性能更好、在移动设备上消耗更少能源的应用程序。它还将使科学家和工程师能够更好地利用这些新兴平台更快地解决他们的问题,从而促进各自领域的进步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abdelrahman, Tarek其他文献

Abdelrahman, Tarek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Abdelrahman, Tarek', 18)}}的其他基金

Reconfigurable Accelerators for Emerging Machine Learning Workloads
适用于新兴机器学习工作负载的可重构加速器
  • 批准号:
    RGPIN-2022-04438
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Bridging the Programmability Gap of Compute Accelerators
缩小计算加速器的可编程性差距
  • 批准号:
    RGPIN-2015-05762
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Bridging the Programmability Gap of Compute Accelerators
缩小计算加速器的可编程性差距
  • 批准号:
    RGPIN-2015-05762
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Bridging the Programmability Gap of Compute Accelerators
缩小计算加速器的可编程性差距
  • 批准号:
    RGPIN-2015-05762
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Performance auto-tuning of GPU programs using machine learning
使用机器学习自动调整 GPU 程序的性能
  • 批准号:
    451889-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Collaborative Research and Development Grants
Bridging the Programmability Gap of Compute Accelerators
缩小计算加速器的可编程性差距
  • 批准号:
    RGPIN-2015-05762
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Performance auto-tuning of GPU programs using machine learning
使用机器学习自动调整 GPU 程序的性能
  • 批准号:
    451889-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Collaborative Research and Development Grants
Compiler support for GPU application accelerators
GPU 应用加速器的编译器支持
  • 批准号:
    121615-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Performance auto-tuning of GPU programs using machine learning
使用机器学习自动调整 GPU 程序的性能
  • 批准号:
    451889-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Collaborative Research and Development Grants
Compiler support for GPU application accelerators
GPU 应用加速器的编译器支持
  • 批准号:
    121615-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CC* Integration-Small: Enhancing Data Transfers by Enabling Programmability and Closed-loop Control in a Non-programmable Science DMZ
CC* Integration-Small:通过在不可编程科学 DMZ 中启用可编程性和闭环控制来增强数据传输
  • 批准号:
    2346726
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Revolution of Programmability in Non-von Neumann Platforms by Employing Tandem CGRA + Stochastic Computing
通过采用串联 CGRA 随机计算实现非冯·诺依曼平台的可编程性革命
  • 批准号:
    22H00515
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
CNS Core: Small: Mitigating Network Bottlenecks via Programmability for Distributed Machine Learning Systems
CNS 核心:小型:通过分布式机器学习系统的可编程性缓解网络瓶颈
  • 批准号:
    2008468
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
CAREER: Facilitating Dependable Neuromorphic Computing: Vision, Architecture, and Impact on Programmability
职业:促进可靠的神经形态计算:愿景、架构和对可编程性的影响
  • 批准号:
    1942697
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
Bridging the Programmability Gap of Compute Accelerators
缩小计算加速器的可编程性差距
  • 批准号:
    RGPIN-2015-05762
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Bridging the Programmability Gap of Compute Accelerators
缩小计算加速器的可编程性差距
  • 批准号:
    RGPIN-2015-05762
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
CMOS image sensor with pixel-wise exposure programmability for computational imaging applications
具有逐像素曝光可编程性的 CMOS 图像传感器,适用于计算成像应用
  • 批准号:
    516239-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Idea to Innovation
CRII: SHF: Improving Programmability of GPGPU/NVRAM Integrated Systems with Holistic Architectural Support
CRII:SHF:通过整体架构支持提高 GPGPU/NVRAM 集成系统的可编程性
  • 批准号:
    1657333
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Bridging the Programmability Gap of Compute Accelerators
缩小计算加速器的可编程性差距
  • 批准号:
    RGPIN-2015-05762
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamical cell-like molecular robots with programmability based on the control of DNA nanostructures on microinterface
基于微界面上 DNA 纳米结构控制的可编程动态类细胞分子机器人
  • 批准号:
    16K12521
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了