Challenges in geometric partial differential equations
几何偏微分方程的挑战
基本信息
- 批准号:RGPIN-2015-06752
- 负责人:
- 金额:$ 2.26万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I propose to study three central questions in geometric analysis. Two come from Einstein's equations of the general theory of relativity, while the third is an inverse problem, a very active area of applied mathematics.
Einstein's equations are thought to provide the correct mathematical description of gravity. They form a system of nonlinear wave equations, as is the case for many equations of mathematical physics. Thus, robust mathematical methods developed in this area have the potential for broader applicability. The two questions I wish to study deal with black hole solutions which are dynamical (i.e. they change in time). They both stem from a central prediction in the subject (coined the ``establishment view'' by Penrose in the 1970s), which deals with the large-time behaviour of the exterior regions of such solutions. The prediction asserts that the emission of gravitational waves should have a stabilizing effect on the underlying metric, enabling it to settle down (asymptotically) to a non-radiating state. Such a state must be stationary (i.e. time-independent), we are told. The question then becomes to understand the possible stationary solutions of the equations.
The first project I propose is to verify the last two assertions: That solutions that do not emit gravitational radiation must indeed be stationary. And that such stationary states must agree with the Kerr solutions, as has been verified (by Hawking, Carter and Robinson) in the very restrictive setting of real-analyticity. The second challenge I wish to address was again proposed by Penrose and is the celebrated inequality that bears his name. This proposes to bound the space-time's mass content from below by the area of trapped surfaces. The inequality was originally proposed as a test of the ``establishment view'', which (in its entirety) lies completely out of the methods of modern mathematical analysis.
The final question is an inverse problem: The challenge is to derive information on the interior of an object's interior, purely by making measurements at its boundary, i.e with no intrusion into the interior. This field has very wide applicability ranging from medical imaging to seismology and geophysics. The type of data one collects at the boundary varies according to the application one has in mind. I propose a challenge inspired by tomography, where the measurements correspond to applying a charge on the boundary of an object (a human body) and measuring the boundary electric current. The objective is to detect the conductivity of tissue, as a gauge for the interior structure. This conductivity is modelled by an (unknown) coefficient of an elliptic partial differential operator which describes the distribution of the electrostatic potential.
All the above projects are meant to be undertaken by a team of researchers, tightly connected with centres of excellence in these subjects.
我建议研究几何分析中的三个中心问题。两个来自爱因斯坦的广义相对论方程,而第三个是一个反问题,一个非常活跃的应用数学领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexakis, Spyros其他文献
Determining a Riemannian metric from minimal areas
- DOI:
10.1016/j.aim.2020.107025 - 发表时间:
2020-06-03 - 期刊:
- 影响因子:1.7
- 作者:
Alexakis, Spyros;Balehowsky, Tracey;Nachman, Adrian - 通讯作者:
Nachman, Adrian
Global uniqueness theorems for linear and nonlinear waves
- DOI:
10.1016/j.jfa.2015.08.012 - 发表时间:
2015-12-01 - 期刊:
- 影响因子:1.7
- 作者:
Alexakis, Spyros;Shao, Arick - 通讯作者:
Shao, Arick
HAWKING'S LOCAL RIGIDITY THEOREM WITHOUT ANALYTICITY
- DOI:
10.1007/s00039-010-0082-7 - 发表时间:
2010-10-01 - 期刊:
- 影响因子:2.2
- 作者:
Alexakis, Spyros;Ionescu, Alexandru D.;Klainerman, Sergiu - 通讯作者:
Klainerman, Sergiu
Unique continuation from infinity for linear waves
- DOI:
10.1016/j.aim.2015.08.028 - 发表时间:
2016-01-02 - 期刊:
- 影响因子:1.7
- 作者:
Alexakis, Spyros;Schlue, Volker;Shao, Arick - 通讯作者:
Shao, Arick
Alexakis, Spyros的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexakis, Spyros', 18)}}的其他基金
Singularity formation in general relativity, and geometric inverse problems.
广义相对论中奇点的形成和几何逆问题。
- 批准号:
RGPIN-2020-05108 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Singularity formation in general relativity, and geometric inverse problems.
广义相对论中奇点的形成和几何逆问题。
- 批准号:
RGPIN-2020-05108 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Singularity formation in general relativity, and geometric inverse problems.
广义相对论中奇点的形成和几何逆问题。
- 批准号:
RGPIN-2020-05108 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Challenges in geometric partial differential equations
几何偏微分方程的挑战
- 批准号:
RGPIN-2015-06752 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Challenges in geometric partial differential equations
几何偏微分方程的挑战
- 批准号:
RGPIN-2015-06752 - 财政年份:2018
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Challenges in geometric partial differential equations
几何偏微分方程的挑战
- 批准号:
RGPIN-2015-06752 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Challenges in geometric partial differential equations
几何偏微分方程的挑战
- 批准号:
RGPIN-2015-06752 - 财政年份:2015
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
对RS和AG码新型软判决代数译码的研究
- 批准号:61671486
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
Ginzburg-Landau 型发展方程的拓扑缺陷以及相关问题研究
- 批准号:11071206
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
Bose-Einstein凝聚、超导G-L模型以及相关问题研究
- 批准号:10771181
- 批准年份:2007
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
- 批准号:
2349575 - 财政年份:2024
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Partial Differential Equations, geometric aspects and applications
偏微分方程、几何方面和应用
- 批准号:
DE230100954 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Early Career Researcher Award
Asymptotic Analysis of Geometric Partial Differential Equations
几何偏微分方程的渐近分析
- 批准号:
2305038 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
- 批准号:
RGPIN-2017-04259 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
RUI: Geometric Optimization Involving Partial Differential Equations
RUI:涉及偏微分方程的几何优化
- 批准号:
2208373 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Geometric Analysis: Investigating the Einstein Equations and Other Partial Differential Equations
几何分析:研究爱因斯坦方程和其他偏微分方程
- 批准号:
2204182 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Continuing Grant
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
- 批准号:
2231783 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Continuing Grant
CAREER: Curvature, Topology, and Geometric Partial Differential Equations, with new tools from Applied Mathematics
职业:曲率、拓扑和几何偏微分方程,以及应用数学的新工具
- 批准号:
2142575 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Continuing Grant