Graphical models: Inference, decision and acquisition
图模型:推理、决策和获取
基本信息
- 批准号:155425-2011
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research concerns intelligent systems, known as agents, that function in uncertain or constraint-based environments, either individually or cooperatively. It focuses on graphical models for knowledge representation and covers issues on knowledge acquisition, inference, and decision making. My previous research has established several classes of multiagent graphical models, known as MSBNs for probabilistic reasoning, DMSBNs for forecasting, and CDNs for design decision making. Agent communication in MSBNs and DMSBNs is initiated by one agent (the root), and its election incurs overhead. To improve flexibility, feasibility of an unrooted regime will be investigated. Multiagent planning will also be studied focusing on online planning, rather than commonly pursued offline policy making, to gain efficiency.
My previous research on multiagent constraint graphical models, known as MSCNs, confirms that lessons learned from multiagent probabilistic graphical models can be usefully extended into distributed constraint satisfaction (DCSP) and optimization (DCOP). The proposed research will explore the structure embedded in lower level runtime representation of MSCNs for more efficient constraint reasoning. Motivated by certain unique, desirable computational properties of CDNs and MSCNs (relative to existing frameworks for DCOP), a multiagent graphical model for DCOP will be developed by generalizing CDNs and MSCNs.
Previous research developed causal models, NIN-AND trees, for efficient acquisition of conditional probability tables (CPTs) in constructing Bayesian networks. These models extend the expressive power of existing models from reinforcing interaction to undermining and mixture of the two. The proposed research will investigate approximating an arbitrary CPT as an NIN-AND tree, algorithms to acquire these models by data mining, and direct incorporation of NIN-AND trees into inference to improve efficiency.
我的研究涉及智能系统(称为代理),该系统单独或合作地在不确定或基于约束的环境中起作用。它着重于用于知识表示的图形模型,并涵盖了知识获取,推理和决策的问题。 我以前的研究已经建立了几类多基因图形模型,称为概率推理的MSBN,用于预测的DMSBN和用于设计决策的CDN。 MSBN和DMSBN中的代理通信是由一个代理(根)启动的,其选举会引起开销。为了提高灵活性,将研究一个无根状态的可行性。 还将研究多种计划,专注于在线计划,而不是通常追求离线政策制定,以提高效率。
我先前对多构约束图形模型(称为MSCN)的研究证实,从多基因概率图形模型中学到的经验教训可以将其扩展到分布式约束满意度(DCSP)和优化(DCOP)中。 拟议的研究将探索MSCN较低级运行时表示中的结构,以进行更有效的约束推理。 由CDN和MSCN的某些独特,理想的计算属性(相对于DCOP的现有框架)的动机,将通过概括CDN和MSCN来开发DCOP的多构图形模型。
先前的研究开发了因果模型,NIN和树木,用于在构建贝叶斯网络中有效地获取条件概率表(CPTS)。 这些模型将现有模型的表达能力从加强相互作用到破坏和混合物的混合。 拟议的研究将调查将任意CPT作为NIN和树,算法通过数据挖掘获得这些模型的算法,并将NIN和树直接融合到推理中以提高效率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiang, Yang其他文献
JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer
- DOI:
10.1073/pnas.0700735104 - 发表时间:
2007-12-04 - 期刊:
- 影响因子:11.1
- 作者:
Xiang, Yang;Zhu, Ziqi;Chen, Charlie Degui - 通讯作者:
Chen, Charlie Degui
Development of a two-in-one integrated assay for the analysis of circRNA-microRNA interactions
开发用于分析 circRNA-microRNA 相互作用的二合一集成测定法
- DOI:
10.1016/j.bios.2021.113032 - 发表时间:
2021-01-26 - 期刊:
- 影响因子:12.6
- 作者:
Jiao, Jin;Duan, Chengjie;Xiang, Yang - 通讯作者:
Xiang, Yang
Expression of the immune targets in tumor-infiltrating immunocytes of gestational trophoblastic neoplasia.
- DOI:
10.3389/pore.2023.1610918 - 发表时间:
2023 - 期刊:
- 影响因子:2.8
- 作者:
Cheng, Hongyan;Zong, Liju;Yu, Shuangni;Chen, Jie;Wan, Xirun;Xiang, Yang;Yang, Junjun - 通讯作者:
Yang, Junjun
In vitro testing of salt coating of fabrics as a potential antiviral agent in reusable face masks.
- DOI:
10.1038/s41598-022-21442-7 - 发表时间:
2022-10-11 - 期刊:
- 影响因子:4.6
- 作者:
Weber, Sandra Schorderet;Bulliard, Xavier;Bonfante, Rosy;Xiang, Yang;Biselli, Silvia;Steiner, Sandro;Constant, Samuel;Pugin, Raphael;Laurent, Alexandra;Majeed, Shoaib;Lebrun, Stefan;Palmieri, Michele;Hogg, Andreas;Kuczaj, Arkadiusz;Peitsch, Manuel C.;Hoeng, Julia;Stan, Adrian - 通讯作者:
Stan, Adrian
Thermokinetic evaluation of pyrrolidinedicarboxylic acid inhibiting cefalexin hydrolysis with metallo-beta-lactamase L1 from Stenotrophomonas maltophilia
吡咯烷二甲酸抑制嗜麦芽寡养单胞菌金属-β-内酰胺酶 L1 水解头孢氨苄的热动力学评价
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:3.5
- 作者:
Yang, Qi;Zhou, Ya-Jun;Xiang, Yang;Yang, Ke-Wu - 通讯作者:
Yang, Ke-Wu
Xiang, Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiang, Yang', 18)}}的其他基金
Tractable NAT-Modeled Bayesian Networks and Privacy Sensitive Construction of Agent Organizations
易处理的 NAT 模型贝叶斯网络和代理组织的隐私敏感构建
- 批准号:
RGPIN-2017-03715 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Tractable NAT-Modeled Bayesian Networks and Privacy Sensitive Construction of Agent Organizations
易处理的 NAT 模型贝叶斯网络和代理组织的隐私敏感构建
- 批准号:
RGPIN-2017-03715 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Tractable NAT-Modeled Bayesian Networks and Privacy Sensitive Construction of Agent Organizations
易处理的 NAT 模型贝叶斯网络和代理组织的隐私敏感构建
- 批准号:
RGPIN-2017-03715 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Tractable NAT-Modeled Bayesian Networks and Privacy Sensitive Construction of Agent Organizations
易处理的 NAT 模型贝叶斯网络和代理组织的隐私敏感构建
- 批准号:
RGPIN-2017-03715 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Tractable NAT-Modeled Bayesian Networks and Privacy Sensitive Construction of Agent Organizations
易处理的 NAT 模型贝叶斯网络和代理组织的隐私敏感构建
- 批准号:
RGPIN-2017-03715 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Tractable NAT-Modeled Bayesian Networks and Privacy Sensitive Construction of Agent Organizations
易处理的 NAT 模型贝叶斯网络和代理组织的隐私敏感构建
- 批准号:
RGPIN-2017-03715 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Space Efficient Probabilistic Graphical Models and Privacy Sensitive Construction of Agent Organizations
代理组织的空间高效概率图形模型和隐私敏感构建
- 批准号:
RGPIN-2016-03616 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Graphical models: Inference, decision and acquisition
图模型:推理、决策和获取
- 批准号:
155425-2011 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Graphical models: Inference, decision and acquisition
图模型:推理、决策和获取
- 批准号:
155425-2011 - 财政年份:2013
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Graphical models: Inference, decision and acquisition
图模型:推理、决策和获取
- 批准号:
155425-2011 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
跨型号电池差异对其外特性的作用机制及普适性建模与健康度评估研究
- 批准号:52307233
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
河北南部地区灰霾的来源和形成机制研究
- 批准号:41105105
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Petri网和DSM的型号产品协同设计过程和数据世系建模及分析方法研究
- 批准号:61170001
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
保险风险模型、投资组合及相关课题研究
- 批准号:10971157
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
- 批准号:30830037
- 批准年份:2008
- 资助金额:190.0 万元
- 项目类别:重点项目
相似海外基金
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
- 批准号:
10568797 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
- 批准号:
10330130 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
- 批准号:
10595510 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Collaborative Research: CIF: Small: Convexification-based Decomposition Methods for Large-Scale Inference in Graphical Models
合作研究:CIF:小型:图模型中大规模推理的基于凸化的分解方法
- 批准号:
2006762 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Convexification-based Decomposition Methods for Large-Scale Inference in Graphical Models
合作研究:CIF:小型:图模型中大规模推理的基于凸化的分解方法
- 批准号:
2007814 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant