Understanding structure-function-properties relationships in biological and engineered materials
了解生物和工程材料中的结构-功能-性质关系
基本信息
- 批准号:RGPIN-2014-05114
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The development of materials plays an essential role in the modern world. New materials enable new technology. This proposal describes a program of research with a vision of developing deep understanding of the relationships between the structure, function, and properties of natural and engineered materials. We propose to use a powerful family of nuclear magnetic resonance (NMR) techniques, combined with simultaneous mechanical or electrical stimulation, to study the structure and dynamics that underlie the properties of a diverse selection of materials. Specific materials are chosen for their unusual mechanical, optical, transport or magnetic properties, and their potential for industrial applications. NMR is the tool of choice for this work due to its ability to provide site-specific information on the molecular structure and dynamics that underlie these properties.Sea-snails lay their eggs in tough protein capsules that protect the eggs from the harsh marine environment. The little-studied capsule material has an unusual ability to repeatedly dissipate large amounts of mechanical energy. We propose a series of NMR experiments to study the egg capsule protein. We will build new apparatus to apply dynamic mechanical strain synchronized with the NMR measurements. This work will provide an unprecedented microscopic understanding of the fascinating properties, and enable the development of synthetic analogues for applications such as seat-belts and shock absorbers, where strong, energy dissipating materials are required.Celluose nanocrystals (CNC) are an emerging renewable-resource based nanomaterial currently being commercialized by a Canadian company with whom we collaborate. We will use NMR techniques to study the morphology and structure of CNC to guide their optimization and exploitation, and answer fundamental questions about the nature of the crystalline and amorphous components.An unusual feature of CNC is their self-assembly into helically ordered arrays when suspended in water. Other collaborators use these suspensions to make highly-porous ordered glassy films. When filled with active liquid crystal molecules, the optical behaviour of the films can be controlled by external stimulus, potentially to make devices such as displays and sensors. We will study the liquid crystal guests absorbed inside these films to enable the development of practical devices.One of the most important deficiencies with today's lithium batteries is safety. The liquid electrolytes used are flammable and have led to numerous fires and safety recalls. We will work with collaborators to study soy-protein and synthetic polymer-based membranes designed for use as solid electrolytes, with the goal of eliminating the flammable liquids. The techniques we propose, combining applied electric fields with the NMR measurements, will provide a detailed microscopic explanation of the electrical behaviour of these membranes, and will guide the further development of practical solid membranes and safer batteries.The mineral chalcopyrite, in which form most copper is mined, has unusual magnetic resonance properties we will study using our unique multi-photon NMR methods. This work has the potential to transform the processing of copper ores to increase efficiency, resulting in environmental and economic benefits to Canada.The impact of this research will be felt not only within the fields of the individual projects, where our innovative hybrid NMR methods will provide unparalleled new insights into molecular mechanisms, but also from the synthesis of the results; by learning from the common themes and unique differences of these materials, we will both broaden and deepen our understanding to accelerate the advancement of our materials-driven world.
材料的发展在现代世界中起着至关重要的作用。新材料催生新技术。该提案描述了一项研究计划,旨在深入了解天然和工程材料的结构,功能和特性之间的关系。我们建议使用一个强大的家庭的核磁共振(NMR)技术,结合同时机械或电刺激,研究的结构和动力学的基础上的各种选择的材料的属性。选择特定的材料是因为它们具有不同寻常的机械、光学、传输或磁性特性,以及它们在工业应用中的潜力。核磁共振是这项工作的首选工具,因为它能够提供有关这些特性的分子结构和动力学的特定信息。海蜗牛将卵产在坚韧的蛋白质胶囊中,以保护卵免受恶劣的海洋环境的影响。这种很少被研究的胶囊材料有一种不同寻常的能力,可以反复耗散大量的机械能。我们提出了一系列的核磁共振实验来研究鸡蛋胶囊蛋白。我们将建立新的装置来施加与NMR测量同步的动态机械应变。这项工作将提供一个前所未有的微观理解的迷人的属性,并使合成类似物的应用,如安全带和减震器的发展,其中强大的,能量耗散材料是必需的。纤维素纳米晶体(CNC)是一种新兴的可再生资源为基础的纳米材料,目前正在商业化的加拿大公司与我们合作。我们将使用NMR技术来研究CNC的形态和结构,以指导其优化和开发,并回答有关结晶和非晶组分性质的基本问题。CNC的一个不寻常的特征是它们在悬浮于水中时自组装成螺旋有序阵列。其他合作者使用这些悬浮液来制造高度多孔的有序玻璃膜。当填充有活性液晶分子时,薄膜的光学行为可以通过外部刺激来控制,可能用于制造显示器和传感器等设备。我们将研究这些薄膜中吸收的液晶客人,以开发实用设备。目前的锂电池最重要的缺陷之一是安全性。使用的液体电解质是易燃的,并导致了许多火灾和安全召回。我们将与合作者合作,研究大豆蛋白和合成聚合物为基础的膜,设计用于固体电解质,以消除易燃液体的目标。我们提出的技术,结合应用的电场与核磁共振测量,将提供一个详细的微观解释这些膜的电行为,并将指导实用的固体膜和更安全的电池的进一步发展。矿物黄铜矿,其中大多数铜被开采,具有不寻常的磁共振特性,我们将使用我们独特的多光子核磁共振方法进行研究。这项工作有可能改变铜矿石的加工,以提高效率,从而为加拿大带来环境和经济效益。这项研究的影响不仅将体现在各个项目的领域内,我们创新的混合NMR方法将为分子机制提供无与伦比的新见解,而且还将体现在结果的综合方面。通过从这些材料的共同主题和独特差异中学习,我们将扩大和加深我们的理解,以加快我们物质驱动的世界的进步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michal, Carl其他文献
Michal, Carl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michal, Carl', 18)}}的其他基金
Understanding functional properties of biological and smart materials
了解生物和智能材料的功能特性
- 批准号:
RGPIN-2019-05245 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Understanding functional properties of biological and smart materials
了解生物和智能材料的功能特性
- 批准号:
RGPIN-2019-05245 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Understanding functional properties of biological and smart materials
了解生物和智能材料的功能特性
- 批准号:
RGPIN-2019-05245 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Understanding functional properties of biological and smart materials
了解生物和智能材料的功能特性
- 批准号:
RGPIN-2019-05245 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Understanding structure-function-properties relationships in biological and engineered materials
了解生物和工程材料中的结构-功能-性质关系
- 批准号:
RGPIN-2014-05114 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Understanding structure-function-properties relationships in biological and engineered materials
了解生物和工程材料中的结构-功能-性质关系
- 批准号:
RGPIN-2014-05114 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Understanding structure-function-properties relationships in biological and engineered materials
了解生物和工程材料中的结构-功能-性质关系
- 批准号:
RGPIN-2014-05114 - 财政年份:2015
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Diffusion coefficient measurement of polymer gel electrolyte formulation components in an electric field by nuclear magnetic resonance
通过核磁共振测量电场中聚合物凝胶电解质配方组分的扩散系数
- 批准号:
478781-2015 - 财政年份:2015
- 资助金额:
$ 2.62万 - 项目类别:
Engage Grants Program
Understanding structure-function-properties relationships in biological and engineered materials
了解生物和工程材料中的结构-功能-性质关系
- 批准号:
RGPIN-2014-05114 - 财政年份:2014
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Applications and methods of NMR in the study of biological materials
核磁共振在生物材料研究中的应用和方法
- 批准号:
227456-2009 - 财政年份:2013
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Rh-N4位点催化醇类氧化反应的微观机制与构效关系研究
- 批准号:22302208
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
体内亚核小体图谱的绘制及其调控机制研究
- 批准号:32000423
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
CTCF/cohesin介导的染色质高级结构调控DNA双链断裂修复的分子机制研究
- 批准号:32000425
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
异染色质修饰通过调控三维基因组区室化影响机体应激反应的分子机制
- 批准号:31970585
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
多层次纳米叠层块体复合材料的仿生设计、制备及宽温域增韧研究
- 批准号:51973054
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
骨髓间充质干细胞成骨成脂分化过程中染色质三维构象改变与转录调控分子机制研究
- 批准号:31960136
- 批准年份:2019
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
染色质三维结构等位效应的亲代传递研究
- 批准号:31970586
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
染色质三维构象新型调控因子的机制研究
- 批准号:31900431
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
转座因子调控多能干细胞染色质三维结构中的作用
- 批准号:31970589
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
磷酸化和可变剪切修饰影响Bnip3调控线粒体自噬和细胞凋亡的结构及功能研究
- 批准号:31670742
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
- 批准号:
10465010 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Towards the understanding of how chaperones function and prevent amyloidogenic diseases
了解伴侣如何发挥作用并预防淀粉样蛋白形成疾病
- 批准号:
10734397 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Understanding and targeting fibroblast activation in influenza-triggered lung inflammation and post-viral disease
了解和靶向流感引发的肺部炎症和病毒后疾病中的成纤维细胞激活
- 批准号:
10717809 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Understanding how social interactions influence reward-seeking behaviors: Developmental mechanisms
了解社交互动如何影响寻求奖励的行为:发展机制
- 批准号:
10716898 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Understanding the origins and mechanisms of aryl hydrocarbon receptor promiscuity
了解芳烃受体混杂的起源和机制
- 批准号:
10679532 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Understanding Rare Genetic Variation and Disease Risk: A Global Neurogenetics Initiative
了解罕见的遗传变异和疾病风险:全球神经遗传学倡议
- 批准号:
10660098 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
A mechanistic understanding of treatment-related outcomes of sleep disordered breathing using functional near infrared spectroscopy
使用功能性近红外光谱从机制上理解睡眠呼吸障碍的治疗相关结果
- 批准号:
10565985 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Understanding the neurodevelopmental effects of youth tackle football participation
了解青少年参与橄榄球运动对神经发育的影响
- 批准号:
10742262 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Understanding how activity drives diverse spine structural interactions
了解活动如何驱动不同的脊柱结构相互作用
- 批准号:
10840581 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别: