Nonequilibrium and dissipative effects in topological materials

拓扑材料中的非平衡和耗散效应

基本信息

  • 批准号:
    435633-2013
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

The development of quantum physics in the beginning of the 20th century revolutionized people's understanding of materials. Based on the laws of quantum physics, solids were classified into insulators, semiconductors, metals, and superconductors. For decades, it was believed that all insulators were similar to one another when it came to their inability to conduct electricity, and that all superconductors were also similar to one another when it came to their extreme ability to carry electrical current. Such belief was first shaken in 1980, and then shattered six years ago, when it became apparent that the behavior of electrons in solids can also be classified using a branch of mathematics known as topology. For example, according to the topological classification of solids, some insulators (dubbed "topological" insulators) conduct electricity on their surfaces whereas others (dubbed "non-topological" or "ordinary" insulators) do not. The metal at the surface of a topological insulator is quite special: electrons are weightless, their conduction of electricity is remarkably robust, and their magnetic properties peculiar. Although the advent of topological materials and their technological promise have ignited a spark of research activity, most of the studies thus far have focused on equilibrium (time-independent) setups, as well as on situations in which electrons are isolated from their environments. Unfortunately, the assumption of equilibrium excludes a number of interesting technological applications, and the assumption of isolated electrons is often not realistic. Therefore, in order to develop useful topological devices that will benefit society, it is crucial to investigate how electrons in topological materials are affected by external perturbations and by their non-electronic environments. This investigation is indeed the prime objective of my research program.
20世纪初量子物理学的发展彻底改变了人们对材料的认识。根据量子物理定律,固体被分为绝缘体、半导体、金属和超导体。几十年来,人们一直认为,所有的绝缘体在不能导电时都是相似的,而当涉及到它们极端的载流能力时,所有超导体也都是相似的。这种信念最初在1980年被动摇,然后在六年前被打破,当时很明显,电子在固体中的行为也可以用一个被称为拓扑学的数学分支来分类。例如,根据固体的拓扑学分类,一些绝缘体(称为“拓扑型”绝缘子)在其表面导电,而另一些绝缘体(称为“非拓扑型”或“普通”绝缘体)则不导电。拓扑绝缘体表面的金属是非常特殊的:电子是失重的,它们的导电性非常强,它们的磁性也很特殊。尽管拓扑材料的出现及其技术前景点燃了研究活动的火花,但到目前为止,大多数研究都集中在平衡(与时间无关)的设置上,以及电子与环境隔离的情况下。不幸的是,平衡假设排除了一些有趣的技术应用,孤立电子的假设通常是不现实的。因此,为了开发有益于社会的有用的拓扑器件,研究拓扑材料中的电子是如何受到外部扰动及其非电子环境的影响是至关重要的。这项调查确实是我研究计划的主要目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Garate, Ion其他文献

Phonon-Induced Topological Transitions and Crossovers in Dirac Materials
  • DOI:
    10.1103/physrevlett.110.046402
  • 发表时间:
    2013-01-22
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Garate, Ion
  • 通讯作者:
    Garate, Ion
Weak localization and antilocalization in topological insulator thin films with coherent bulk-surface coupling
  • DOI:
    10.1103/physrevb.86.035422
  • 发表时间:
    2012-07-16
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Garate, Ion;Glazman, Leonid
  • 通讯作者:
    Glazman, Leonid
Gilbert damping in conducting ferromagnets. I. Kohn-Sham theory and atomic-scale inhomogeneity
  • DOI:
    10.1103/physrevb.79.064403
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Garate, Ion;MacDonald, Allan
  • 通讯作者:
    MacDonald, Allan
Theory of weak localization in ferromagnetic (Ga,Mn)As
  • DOI:
    10.1103/physrevb.79.155207
  • 发表时间:
    2009-04-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Garate, Ion;Sinova, Jairo;MacDonald, A. H.
  • 通讯作者:
    MacDonald, A. H.
Experimental evidence and control of the bulk-mediated intersurface coupling in topological insulator Bi2Te2Se nanoribbons
拓扑绝缘体 Bi2Te2Se 纳米带体介导界面耦合的实验证据和控制
  • DOI:
    10.1103/physrevb.91.041401
  • 发表时间:
    2015-01-05
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Li, Zhaoguo;Garate, Ion;Wang, Guanghou
  • 通讯作者:
    Wang, Guanghou

Garate, Ion的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Garate, Ion', 18)}}的其他基金

Topological materials: from fundamentals to applications
拓扑材料:从基础到应用
  • 批准号:
    RGPIN-2018-05385
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Topological materials: from fundamentals to applications
拓扑材料:从基础到应用
  • 批准号:
    RGPIN-2018-05385
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Topological materials: from fundamentals to applications
拓扑材料:从基础到应用
  • 批准号:
    RGPIN-2018-05385
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Topological materials: from fundamentals to applications
拓扑材料:从基础到应用
  • 批准号:
    RGPIN-2018-05385
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Topological materials: from fundamentals to applications
拓扑材料:从基础到应用
  • 批准号:
    522494-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Topological materials: from fundamentals to applications
拓扑材料:从基础到应用
  • 批准号:
    RGPIN-2018-05385
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Topological materials: from fundamentals to applications
拓扑材料:从基础到应用
  • 批准号:
    522494-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Nonequilibrium and dissipative effects in topological materials
拓扑材料中的非平衡和耗散效应
  • 批准号:
    435633-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Nonequilibrium and dissipative effects in topological materials
拓扑材料中的非平衡和耗散效应
  • 批准号:
    435633-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Nonequilibrium and dissipative effects in topological materials
拓扑材料中的非平衡和耗散效应
  • 批准号:
    435633-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Dissipative Vesicle Assemblies Driven by Chemical Fuels
化学燃料驱动的耗散囊泡组件
  • 批准号:
    2304664
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Dissipative Supramolecular Reactor
耗散超分子反应器
  • 批准号:
    22KF0395
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
SBIR Phase II: Mimicking Metatarsophalangeal Joints Using Tailored, Ultra-Dissipative, Liquid-Crystalline Elastomers to Treat Hallux Rigidus
SBIR 第二阶段:使用定制的超耗散液晶弹性体模仿跖趾关节来治疗拇趾僵硬
  • 批准号:
    2242770
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Cooperative Agreement
Large time behavior of solutions to nonlinear hyperbolic and dispersive equations with weakly dissipative structure
弱耗散结构非线性双曲和色散方程解的大时间行为
  • 批准号:
    22KJ2801
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
  • 批准号:
    2307097
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
Brittle Fracture of Dissipative Solids
耗散固体的脆性断裂
  • 批准号:
    2308169
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Development of analysis method of quantum coherence in dissipative systems and its applications
耗散系统量子相干性分析方法的发展及其应用
  • 批准号:
    23K13071
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Dynamics and Non-Dissipative Approximations of Nonlinear Nonlocal Fluid Equations
非线性非局部流体方程的动力学和非耗散近似
  • 批准号:
    2204614
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Dissipative mode theories and reservoir engineering in quantum nanophotonics
量子纳米光子学中的耗散模式理论和储层工程
  • 批准号:
    RGPIN-2020-04069
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Phase transitions, criticality and non-trivial topological states in non-equilibrium driven-dissipative systems using analytical methods and tensor ne
使用分析方法和张量 ne 的非平衡驱动耗散系统中的相变、临界性和非平凡拓扑态
  • 批准号:
    2731618
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了