Optimization models and algorithms for complex production planning problems

复杂生产计划问题的优化模型和算法

基本信息

  • 批准号:
    RGPIN-2014-03849
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Production planning concerns the activity of constructing an optimal production plan. Decisions have to be taken on the level and timing of production lots, usually for several different products at the same time. The objective is typically to minimize the total costs while satisfying the customers’ demand. Production planning is a central step in the optimization of overall supply chain activities. Efficient plans give companies a competitive advantage through lower costs and improved customer service. In this proposed research program, we will look at production planning problems with dynamic demands. Products that are not immediately used can be kept in stock. Such models are also known as lotsizing models. The general objective of the proposed research program is to optimize complex industrial extensions of the basic production planning problem using Mixed Integer Programming techniques. For each of the extensions, we plan to develop customized algorithms to find good or even optimal solutions. We will specifically consider the following four extensions.1. Most companies are nowadays concerned with decreasing their carbon footprint, either because of legislation or out of social concern. Since production is a major source of carbon emission, it will become necessary to take into account the emission restrictions in the production planning. The problem becomes more complex if we also take into account the distribution planning, given that transportation also generates high levels of carbon emissions.2. Most products are made using several components in a fixed proportion. In some industries (e.g. food industry, steel manufacturing), however, there is some flexibility with respect to the exact amount used of each component (or ingredient) as long as some global constraints are met. These ‘blending’ models can be extended to a multi-period planning horizon, with production and ordering decisions on both the final products and the components. 3. In a production environment, some machines are dedicated to making one specific product, whereas others are flexible and can make several types of products. By having more flexible machines, companies can decrease their total backlog, overtime and outsourcing costs. The proposed models will help us to evaluate the value of flexibility and to decide on the best way to implement manufacturing flexibility.4. In some industries like the steel industry, several smaller size lengths are cut from a larger standard beam size. The planning of the cutting operations in order to minimize waste is very complex, but becomes even more difficult when the planning needs to be done over several weeks. This requires simultaneously planning the production of standard beams, and the cutting operations.The research is innovative since the extensions that are proposed are either novel in the lotsizing literature or extensions that have received little attention up to now. These novel extensions will require new and customized algorithms to solve them. The significance of the proposal stems from the relevance and impact. The proposed extensions are relevant for specific industries (like the product flexibility for the blending industry and the cutting stock extension for the steel industry), or in general (like determining the optimal flexibility level or taking into account carbon emission constraints). Furthermore, the models and algorithms will help decision makers to obtain more cost efficient solutions and a better use of scarce resources. These projects will be an integral part of the training of highly qualified MSc. and PhD. students. We also expect that the results of this research will be disseminated through publications in high quality academic journals.
生产计划是指制定最优生产计划的活动。必须对生产批次的水平和时间做出决定,通常是同时生产几种不同的产品。目标通常是在满足客户需求的同时使总成本最小化。生产计划是优化整个供应链活动的核心步骤。高效的计划通过降低成本和改善客户服务为公司带来竞争优势。在这项研究计划中,我们将着眼于动态需求的生产计划问题。不立即使用的产品可以保留库存。这种模型也被称为批量模型。拟议的研究计划的总体目标是优化复杂的工业扩展的基本生产计划问题,使用混合规划技术。对于每一个扩展,我们计划开发定制的算法来找到好的甚至是最优的解决方案。我们将具体考虑以下四个扩展。如今,大多数公司都关心减少碳足迹,无论是出于立法还是出于社会关注。由于生产是碳排放的主要来源,因此有必要在生产规划中考虑排放限制。考虑到运输也会产生大量的碳排放,如果我们考虑到配送规划,问题会变得更加复杂。2.大多数产品都是由几种成分按固定比例制成的。然而,在某些行业(例如食品工业、钢铁制造业),只要满足某些全球约束条件,每种成分(或成分)的确切用量就有一定的灵活性。这些“混合”模型可以扩展到多周期计划范围,包括最终产品和组件的生产和订购决策。3.在生产环境中,有些机器专用于制造一种特定的产品,而另一些机器则是灵活的,可以制造多种类型的产品。通过拥有更灵活的机器,公司可以减少总积压,加班和外包成本。所提出的模型将有助于我们评估柔性的价值,并决定最好的方式来实现制造柔性。在一些行业,如钢铁行业,几个较小尺寸的长度是从一个较大的标准梁尺寸切割。为了最小化浪费而规划切割操作是非常复杂的,但是当规划需要在几周内完成时变得更加困难。这需要同时规划标准梁的生产和切割操作。该研究具有创新性,因为所提出的扩展在批量生产文献中是新颖的,或者到目前为止很少受到关注。这些新的扩展将需要新的和定制的算法来解决它们。该提案的重要性源于其相关性和影响力。建议的扩展适用于特定行业(如混合行业的产品灵活性和钢铁行业的切割库存扩展),或一般(如确定最佳灵活性水平或考虑碳排放限制)。此外,模型和算法将帮助决策者获得更具成本效益的解决方案和更好地利用稀缺资源。这些项目将是高素质的硕士培训的一个组成部分。和PhD。学生我们还希望这项研究的结果将通过高质量学术期刊的出版物传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jans, Raf其他文献

The impact of service level constraints in deterministic lot sizing with backlogging
Benders Decomposition for Production Routing Under Demand Uncertainty
  • DOI:
    10.1287/opre.2015.1401
  • 发表时间:
    2015-07-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Adulyasak, Yossiri;Cordeau, Jean-Francois;Jans, Raf
  • 通讯作者:
    Jans, Raf
Optimization-Based Adaptive Large Neighborhood Search for the Production Routing Problem
  • DOI:
    10.1287/trsc.1120.0443
  • 发表时间:
    2014-02-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Adulyasak, Yossiri;Cordeau, Jean-Francois;Jans, Raf
  • 通讯作者:
    Jans, Raf

Jans, Raf的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jans, Raf', 18)}}的其他基金

Optimization Models and Algorithms for Complex Production Planning Problems
复杂生产计划问题的优化模型和算法
  • 批准号:
    RGPIN-2019-05759
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization Models and Algorithms for Complex Production Planning Problems
复杂生产计划问题的优化模型和算法
  • 批准号:
    RGPIN-2019-05759
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization Models and Algorithms for Complex Production Planning Problems
复杂生产计划问题的优化模型和算法
  • 批准号:
    RGPAS-2019-00100
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Optimization Models and Algorithms for Complex Production Planning Problems
复杂生产计划问题的优化模型和算法
  • 批准号:
    RGPIN-2019-05759
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization Models and Algorithms for Complex Production Planning Problems
复杂生产计划问题的优化模型和算法
  • 批准号:
    RGPIN-2019-05759
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization Models and Algorithms for Complex Production Planning Problems
复杂生产计划问题的优化模型和算法
  • 批准号:
    RGPAS-2019-00100
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Optimization models and algorithms for complex production planning problems
复杂生产计划问题的优化模型和算法
  • 批准号:
    RGPIN-2014-03849
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization models and algorithms for complex production planning problems
复杂生产计划问题的优化模型和算法
  • 批准号:
    RGPIN-2014-03849
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization models and algorithms for complex production planning problems
复杂生产计划问题的优化模型和算法
  • 批准号:
    RGPIN-2014-03849
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Integration of 3D printing in the Canadian aerospace value chain
3D 打印融入加拿大航空航天价值链
  • 批准号:
    490485-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Engage Grants Program

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
河北南部地区灰霾的来源和形成机制研究
  • 批准号:
    41105105
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
保险风险模型、投资组合及相关课题研究
  • 批准号:
    10971157
  • 批准年份:
    2009
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
  • 批准号:
    30830037
  • 批准年份:
    2008
  • 资助金额:
    190.0 万元
  • 项目类别:
    重点项目
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

SCH: Simulation Optimization of Cardiac Surgical Planning
SCH:心脏手术计划的模拟优化
  • 批准号:
    10816654
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Mathematical Model-Based Optimization of CRT Response in Ischemia
基于数学模型的缺血 CRT 反应优化
  • 批准号:
    10734486
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Big Data Analytics: Optimization Models and Algorithms with Applications in Smart Food Supply Chains and Networks
大数据分析:优化模型和算法在智能食品供应链和网络中的应用
  • 批准号:
    RGPIN-2020-06792
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven optimization for DBS programming in temporal lobe epilepsy
颞叶癫痫 DBS 编程的数据驱动优化
  • 批准号:
    10574839
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
Optimization of urban mobility of people and freight: models and algorithms to design policies and reduce greenhouse gas emissions
优化城市人员和货物流动:设计政策和减少温室气体排放的模型和算法
  • 批准号:
    577061-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Alliance Grants
Optimization models, methods and algorithms applied to hydropower operations planning
水电调度优化模型、方法和算法
  • 批准号:
    RGPIN-2018-06331
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization Models and Algorithms for Complex Production Planning Problems
复杂生产计划问题的优化模型和算法
  • 批准号:
    RGPIN-2019-05759
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Carol Act Supplement to Data-driven optimization of therapy for heart failure
卡罗尔法案对数据驱动的心力衰竭治疗优化的补充
  • 批准号:
    10851206
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
Patient Specific Parameter Optimization of Thalamic Stimulation for Treatment of Epilepsy
用于治疗癫痫的丘脑刺激的患者特定参数优化
  • 批准号:
    10700113
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
Developing novel optimization models and algorithms for energy systems with renewable energy and storage capacities
为具有可再生能源和存储能力的能源系统开发新颖的优化模型和算法
  • 批准号:
    RGPIN-2019-06699
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了