Computational methods for modeling and design of complex engineering systems under uncertainty

不确定性下复杂工程系统建模与设计的计算方法

基本信息

  • 批准号:
    RGPIN-2016-06330
  • 负责人:
  • 金额:
    $ 2.77万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Computation-based design is starting to become the norm in many engineering sectors and high-fidelity models are now increasingly used to support decision making in industrial design practice. Despite the significant progress that has been made in this area, a number of challenges remain to be overcome in order to fully realize the potential of computation-based design workflows to accelerate complex systems design. One of the main challenges is computational cost. With the increasing push towards high-fidelity models, evaluation of a wide range of design alternatives/concepts can be computationally infeasible even on massively parallel computers. Another challenge arises from the fact that uncertainty is ubiquitous in the mathematical modeling and characterization of engineering systems. Existing approaches can be computationally prohibitive when dealing with uncertainty, e.g., when engineers wish to predict performance statistics using a high-fidelity model and/or decide on parameter settings that can help mitigate the impact of uncertainty. These two challenges are exacerbated by the fact that computer models of complex real-world engineering systems are often parametrized in terms of a huge number of design variables and uncertain parameters. There is a pressing need for scalable and efficient algorithms to tackle high-dimensional problems in computational modeling and design optimization, especially in the presence of uncertainty.
基于计算的设计开始成为许多工程领域的标准,高保真模型现在越来越多地用于支持工业设计实践中的决策。尽管在这一领域取得了重大进展,但仍有许多挑战有待克服,以充分实现基于计算的设计工作流程的潜力,以加速复杂系统的设计。主要挑战之一是计算成本。随着对高保真模型的不断推动,即使在大规模并行计算机上,对各种设计方案/概念的评估在计算上也是不可行的。另一个挑战来自于这样一个事实,即不确定性在工程系统的数学建模和表征中无处不在。现有的方法在处理不确定性时可能在计算上是禁止的,例如,当工程师希望使用高保真模型预测性能统计数据和/或决定可以帮助减轻不确定性影响的参数设置时。这两个挑战加剧了复杂的现实世界的工程系统的计算机模型,往往是参数化的大量的设计变量和不确定的参数。在计算建模和设计优化中,特别是在存在不确定性的情况下,迫切需要可扩展且有效的算法来解决高维问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nair, Prasanth其他文献

Recovery Stress and Storage Modulus of Microwave-Induced Graphene-Reinforced Thermoresponsive Shape Memory Polyurethane Nanocomposites

Nair, Prasanth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nair, Prasanth', 18)}}的其他基金

Computational methods for modeling and design of complex engineering systems under uncertainty
不确定性下复杂工程系统建模与设计的计算方法
  • 批准号:
    RGPIN-2016-06330
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Computational methods for modeling and design of complex engineering systems under uncertainty
不确定性下复杂工程系统建模与设计的计算方法
  • 批准号:
    RGPIN-2016-06330
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Modeling and Design Optimization Under Uncertainty
不确定性下的计算建模和设计优化
  • 批准号:
    1000230896-2015
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Canada Research Chairs
Robust Structural Topology Optimization
稳健的结构拓扑优化
  • 批准号:
    543593-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Collaborative Research and Development Grants
Computational methods for modeling and design of complex engineering systems under uncertainty
不确定性下复杂工程系统建模与设计的计算方法
  • 批准号:
    RGPIN-2016-06330
  • 财政年份:
    2019
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Modeling and Design Optimization Under Uncertainty
不确定性下的计算建模和设计优化
  • 批准号:
    1000230896-2015
  • 财政年份:
    2019
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Canada Research Chairs
Computational Modeling and Design Optimization Under Uncertainty
不确定性下的计算建模和设计优化
  • 批准号:
    1000230896-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Canada Research Chairs
Computational methods for modeling and design of complex engineering systems under uncertainty
不确定性下复杂工程系统建模与设计的计算方法
  • 批准号:
    RGPIN-2016-06330
  • 财政年份:
    2018
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Modeling and Design Optimization Under Uncertainty
不确定性下的计算建模和设计优化
  • 批准号:
    1000230896-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Canada Research Chairs
Computational Modeling and Design Optimization Under Uncertainty
不确定性下的计算建模和设计优化
  • 批准号:
    1000230896-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Canada Research Chairs

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
  • 批准号:
    10824044
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
Computational Modeling Core
计算建模核心
  • 批准号:
    10551707
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
Developing a nucleic acid force field with direct chemical perception for computational modeling of nucleic acid therapeutics
开发具有直接化学感知的核酸力场,用于核酸治疗的计算建模
  • 批准号:
    10678562
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
Developing computational methods to identify of endogenous substrates of E3 ubiquitin ligases and molecular glue degraders
开发计算方法来鉴定 E3 泛素连接酶和分子胶降解剂的内源底物
  • 批准号:
    10678199
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
Computational Strategies to Tailor Existing Interventions for First Major Depressive Episodes to Inform and Test Personalized Interventions
针对首次严重抑郁发作定制现有干预措施的计算策略,以告知和测试个性化干预措施
  • 批准号:
    10650695
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
Applying Computational Phenotypes To Assess Mental Health Disorders Among Transgender Patients in the United States
应用计算表型评估美国跨性别患者的心理健康障碍
  • 批准号:
    10604723
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
Computational Infrastructure for Automated Force Field Development and Optimization
用于自动力场开发和优化的计算基础设施
  • 批准号:
    10699200
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
Novel Hybrid Computational Models to Disentangle Complex Immune Responses
新型混合计算模型可解开复杂的免疫反应
  • 批准号:
    10794448
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
Computational simulation of the potential improvement in clinical outcomes of cardiovascular diseases with the use of a personalized predictive medicine approach
使用个性化预测医学方法对心血管疾病临床结果的潜在改善进行计算模拟
  • 批准号:
    10580116
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了