Study of explosion physics

爆炸物理研究

基本信息

  • 批准号:
    RGPIN-2014-06527
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

The increase in the consumption of fossil fuels for power production has led to a measured rise in the atmospheric concentration of the greenhouse gas carbon dioxide. The use of higher-hydrogen content gaseous fuel in gas turbines and internal combustion engines for fixed power generation has been promoted in order to reduce the production of carbon dioxide, a byproduct of burning carbon based fuel. The explosion hazard associated with these fuels is significantly higher than that for natural gas currently used in power plants. A method to categorize the relative hazard associated with these new high hydrogen content fuels is required for safety guidelines. In fact, a better system is required to categorize common fuels used in the chemical industry and transported by rail and trucks. This is important to mitigate major incidents like the explosion caused by the train derailment in Lac-Megantic, Quebec, on July 6, 2013 that killed 35 people. The National Fire Protection Agency recommends the use of the minimum explosion safe gap (MESG) to design explosion-proof electric equipment, such as electric motors. The smaller the fuel-air mixture’s MESG, the more hazardous the fuel. Because of the small scale of the apparatus used to measure the MESG, experiments are relatively inexpensive to perform, and as a result data exists for a wide range of fuels. The MESG is useful for describing fuel-air mixture sensitivity to flame propagation, however, it is not an appropriate parameter to characterize the sensitivity of such a mixture to detonate. A detonation is a supersonic combustion wave that propagates by a process that is different from that of a flame. The experimentally measured detonation cell size is generally used to characterize detonation sensitivity of a gas, but the ±50% measurement uncertainty is not acceptable for safety guidelines. Another parameter that could be used is the critical tube diameter but it requires a relatively large apparatus that makes it impractical for obtaining data for a large number of fuels.A method is proposed to measure the sensitivity of a fuel to detonate based on the propagation of a supersonic combustion wave through a tube equipped with a series of orifice plates. The minimum (or critical) orifice plate diameter that can support the propagation of a combustion wave propagating at an average velocity faster than the theoretical highest flame velocity will be measured for different fuel-air mixtures. Much like the MESG, the smaller the critical orifice plate diameter the more detonable the mixture. Experiments will be performed to investigate supersonic combustion wave propagation. The critical orifice diameter will be measured for different fuels in a round steel tube. Experiments are performed with a fuel-air mixture where the orifice plate diameter is progressively increased until a supersonic combustion wave can propagate. Another experiment will be carried out in a channel where high-speed video will capture the structure of the combustion wave as it propagates past a series of obstacles. The visualization results, along with computational fluid dynamics modeling, will make possible the identification of the physics involved in the way a supersonic combustion wave propagates in an obstacle laden tube. This experimental program will provide data for the development of safety guidelines to be used for the transport and use of common fuels. Such guidelines have the potential to limit the number of severe accidental explosions, thereby minimize property and environmental damage, and ultimately prevent the loss of life. This program will provide training of multiple highly qualified personnel, including one MASc, two PhDs, and five undergraduate students.
用于发电的化石燃料消耗量的增加,导致大气中温室气体二氧化碳的浓度有节制地上升。为了减少燃烧碳基燃料的副产品二氧化碳的产生,燃气轮机和内燃机在固定发电中使用含氢量较高的气体燃料得到了推广。与这些燃料相关的爆炸危险明显高于发电厂目前使用的天然气。安全指南需要一种方法来分类与这些新的高氢含量燃料相关的相对危险。事实上,需要一个更好的系统来对化学工业中使用的、由铁路和卡车运输的常见燃料进行分类。这对于缓解2013年7月6日魁北克省Lac-Megantic火车脱轨导致35人死亡的爆炸等重大事件非常重要。国家消防局建议使用最小爆炸安全间隙(MESG)来设计防爆电气设备,如电机。燃料-空气混合物的MESG越小,燃料的危险性就越大。由于用于测量MESG的仪器规模较小,进行实验的成本相对较低,因此存在各种燃料的数据。MESG可用于描述燃料-空气混合物对火焰传播的敏感性,但它不是表征这种混合物对爆炸敏感性的合适参数。爆震是一种超音速燃烧波,它通过与火焰不同的过程传播。实验测量的爆轰室尺寸通常用来表征气体的爆轰感度,但安全指南不能接受±50%的测量不确定度。另一个可以使用的参数是临界管径,但它需要相对较大的仪器,这使得获取大量燃料的数据是不现实的。提出了一种基于超音速燃烧波通过装有一系列孔板的管子的方法来测量燃料对爆轰的感度。对于不同的燃料-空气混合物,将测量能够支持以比理论最高火焰速度更快的平均速度传播的燃烧波的最小(或临界)孔板直径。与MESG非常相似,临界孔板直径越小,混合物的爆破性越强。将进行实验来研究超音速燃烧波的传播。在圆管中测量不同燃料的临界孔口直径。实验是在燃料-空气混合物中进行的,其中孔板直径逐渐增加,直到超音速燃烧波可以传播。另一项实验将在一个通道中进行,在那里高速视频将捕捉燃烧波传播通过一系列障碍物时的结构。可视化结果与计算流体力学模型一起,将使识别超音速燃烧波在充满障碍的管道中传播的方式所涉及的物理成为可能。这一实验计划将为制定用于运输和使用普通燃料的安全指南提供数据。这样的指导方针有可能限制严重意外爆炸的数量,从而将财产和环境损害降至最低,并最终防止生命损失。该项目将培养多名高素质人才,包括一名硕士、两名博士和五名本科生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ciccarelli, Gabriel其他文献

Ciccarelli, Gabriel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ciccarelli, Gabriel', 18)}}的其他基金

Detonation Propagation in a Rotating Detonation Engine
旋转爆震发动机中的爆震传播
  • 批准号:
    RGPIN-2019-04342
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Detonation Propagation in a Rotating Detonation Engine
旋转爆震发动机中的爆震传播
  • 批准号:
    RGPIN-2019-04342
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Detonation Propagation in a Rotating Detonation Engine
旋转爆震发动机中的爆震传播
  • 批准号:
    RGPIN-2019-04342
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Detonation Propagation in a Rotating Detonation Engine
旋转爆震发动机中的爆震传播
  • 批准号:
    RGPIN-2019-04342
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Study of explosion physics
爆炸物理研究
  • 批准号:
    RGPIN-2014-06527
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Dual-fuel diesel injector study
双燃料柴油机喷油器研究
  • 批准号:
    514845-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Engage Grants Program
Visit Westport to discuss research collaboration
访问西港讨论研究合作
  • 批准号:
    505443-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Connect Grants Level 1
Study of explosion physics
爆炸物理研究
  • 批准号:
    RGPIN-2014-06527
  • 财政年份:
    2016
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Natural gas use in a diesel engine - methane emission testing
柴油发动机中天然气的使用 - 甲烷排放测试
  • 批准号:
    478245-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Engage Plus Grants Program
Discussion of potential DME/methanol engine research collaboration
讨论潜在的二甲醚/甲醇发动机研究合作
  • 批准号:
    478629-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Interaction Grants Program

相似国自然基金

飞秒双色场下分子的三维无场准直动力学研究
  • 批准号:
    11004078
  • 批准年份:
    2010
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
蒸汽爆炸中膜态沸腾条件下高温颗粒周围流体的热动力特性研究
  • 批准号:
    50376036
  • 批准年份:
    2003
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Multicomponent Modeling of High-Dimensional Multiparametric MRI Data
高维多参数 MRI 数据的多分量建模
  • 批准号:
    10861533
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
AI-accelerated optical simulation for fast timing nuclear imaging
用于快速核成像的人工智能加速光学模拟
  • 批准号:
    10744626
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Harvard PRECISION Human Pain Center
哈佛精密人类疼痛中心
  • 批准号:
    10594334
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
Harvard PRECISION Human Pain Center
哈佛精密人类疼痛中心
  • 批准号:
    10707416
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
Deep Learning Reconstruction for Improved TOF PET Using Histo-Image Partitioning
使用组织图像分区进行深度学习重建以改进 TOF PET
  • 批准号:
    10441527
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
An ultra-high (FLASH) dose rate x-ray cabinet system for pre-clinical laboratory radiation research
用于临床前实验室辐射研究的超高 (FLASH) 剂量率 X 射线柜系统
  • 批准号:
    10454276
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
Integrated Immune Engineering for Poor Prognosis Cancers
综合免疫工程治疗预后不良的癌症
  • 批准号:
    10700921
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
Deep Learning Reconstruction for Improved TOF PET Using Histo-Image Partitioning
使用组织图像分区进行深度学习重建以改进 TOF PET
  • 批准号:
    10276952
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
Integrated Immune Engineering for Poor Prognosis Cancers
综合免疫工程治疗预后不良的癌症
  • 批准号:
    10270392
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
Toward understanding progenitors and explosion physics of core-collapse supernovae by mutual studies between observations and numerical simulations
通过观测和数值模拟之间的相互研究来了解核心塌陷超新星的前身和爆炸物理
  • 批准号:
    21H01121
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了