Engineering manufacturable next generation photocatalytic nanomaterials for high efficiency hydrogen fuel generation
用于高效氢燃料发电的工程可制造下一代光催化纳米材料
基本信息
- 批准号:493831-2016
- 负责人:
- 金额:$ 12.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Strategic Projects - Group
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Worldwide energy usage is on track to double from current levels to approximately 40 TW by 2050. With 80% of current global energy usage arising from fossil fuels, existing energy usage growth trends are therefore expected to exacerbate atmospheric green house gas levels and correlated climate change phenomena over the next 40 years, with ground transportation contributing to near 30% of energy usage. To address growing global energy needs, new cost effective manufacturable technologies are needed that are both environmentally safe and provide the necessary energy density for automotive transportation. However, solar energy hitting the Earth's surface exceeds that of 100 million 500 MW power plants. Hence, manufacturable solar energy nanomaterials represent a major opportunity to address rapidly growing worldwide energy demands and climate trends -- and an important manufacturing export market opportunity for Canada. However, solar energy suffers from intermittent day-night cycle power generation. Though this can be alleviated through storage mechanisms, an optimal solution resides in the direct conversion of solar energy into fuels through artificial photosynthesis. In this manner, sunlight is directly converted into hydrogen and oxygen through the photocatalytic splitting of water in tandem solar cells and associated architectures. However, the performance of current photocatalysts is well below that needed for practical automotive applications and their performance, even with the same elemental composition, varies widely based on surface morphology, carrier transport, and crystallinity. It is the goal of this proposal to develop a systematic engineering design approach to produce manufacturable photocatalytic oxide nanomaterials based on lower cost elements (rather than expensive noble metals) possessing high hydrogen fuel generation efficiencies. Upon completion of the proposal, we aim to transfer the technologies developed to our industrial partners for the greater benefit of the Canadian manufacturing industry.
到2050年,全球能源使用量将从目前的水平翻一番,达到约40太瓦。目前全球80%的能源使用来自化石燃料,因此,现有的能源使用增长趋势预计将在未来40年加剧大气温室气体水平和相关的气候变化现象,而地面运输将贡献近30%的能源使用。为了满足日益增长的全球能源需求,需要新的成本效益高的可制造技术,既要环保,又要为汽车运输提供必要的能量密度。然而,到达地球表面的太阳能超过了1亿个500兆瓦的发电厂。因此,可制造的太阳能纳米材料是解决快速增长的全球能源需求和气候趋势的一个重要机会,也是加拿大重要的制造业出口市场机会。然而,太阳能的缺点是间歇性的昼夜循环发电。虽然这可以通过储存机制来缓解,但最优的解决方案是通过人工光合作用将太阳能直接转化为燃料。通过这种方式,阳光通过串联太阳能电池和相关结构中的水的光催化分解直接转化为氢和氧。然而,目前的光催化剂的性能远远低于实际汽车应用所需的性能,即使具有相同的元素组成,它们的性能也会因表面形貌、载流子传输和结晶度而有很大差异。本提案的目标是开发一种系统的工程设计方法,以生产可制造的光催化氧化物纳米材料,该材料基于具有高氢燃料生成效率的低成本元素(而不是昂贵的贵金属)。在提案完成后,我们的目标是将开发的技术转让给我们的工业伙伴,以使加拿大制造业获得更大的利益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bevan, Kirk其他文献
Bevan, Kirk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bevan, Kirk', 18)}}的其他基金
Nanoengineering Interfacial and Solid-State Electrochemical Redox Devices via Computational Design and Informatics
通过计算设计和信息学的纳米工程界面和固态电化学氧化还原装置
- 批准号:
RGPIN-2019-05411 - 财政年份:2022
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Nanoengineering Interfacial and Solid-State Electrochemical Redox Devices via Computational Design and Informatics
通过计算设计和信息学的纳米工程界面和固态电化学氧化还原装置
- 批准号:
RGPIN-2019-05411 - 财政年份:2021
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Nanoengineering Interfacial and Solid-State Electrochemical Redox Devices via Computational Design and Informatics
通过计算设计和信息学的纳米工程界面和固态电化学氧化还原装置
- 批准号:
RGPIN-2019-05411 - 财政年份:2020
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Nanoengineering Interfacial and Solid-State Electrochemical Redox Devices via Computational Design and Informatics
通过计算设计和信息学的纳米工程界面和固态电化学氧化还原装置
- 批准号:
RGPIN-2019-05411 - 财政年份:2019
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Engineering manufacturable next generation photocatalytic nanomaterials for high efficiency hydrogen fuel generation
用于高效氢燃料发电的工程可制造下一代光催化纳米材料
- 批准号:
493831-2016 - 财政年份:2018
- 资助金额:
$ 12.46万 - 项目类别:
Strategic Projects - Group
Computational Design of Next Generation Nanoelectronic Materials
下一代纳米电子材料的计算设计
- 批准号:
418311-2012 - 财政年份:2018
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Computational Design of Next Generation Nanoelectronic Materials
下一代纳米电子材料的计算设计
- 批准号:
418311-2012 - 财政年份:2017
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Engineering manufacturable next generation photocatalytic nanomaterials for high efficiency hydrogen fuel generation
用于高效氢燃料发电的工程可制造下一代光催化纳米材料
- 批准号:
493831-2016 - 财政年份:2016
- 资助金额:
$ 12.46万 - 项目类别:
Strategic Projects - Group
The design and mapping of next generation nano lithium-ion battery cathodes
下一代纳米锂离子电池正极的设计和测绘
- 批准号:
453684-2013 - 财政年份:2016
- 资助金额:
$ 12.46万 - 项目类别:
Collaborative Research and Development Grants
The design and mapping of next generation nano lithium-ion battery cathodes
下一代纳米锂离子电池正极的设计和测绘
- 批准号:
453684-2013 - 财政年份:2015
- 资助金额:
$ 12.46万 - 项目类别:
Collaborative Research and Development Grants
相似海外基金
SBIR Phase II: In-vivo validation of a volume-manufacturable and factory-calibrated wearable NT-proBNP monitoring system for heart failure treatment
SBIR II 期:用于心力衰竭治疗的可批量生产和工厂校准的可穿戴 NT-proBNP 监测系统的体内验证
- 批准号:
2335105 - 财政年份:2024
- 资助金额:
$ 12.46万 - 项目类别:
Cooperative Agreement
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
- 批准号:
2245298 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
Understanding Mixed-Mode Fracture Mechanics in Additively Manufacturable Functionally Graded Microcellular Solids
了解可增材制造的功能梯度微孔固体中的混合模式断裂力学
- 批准号:
2317406 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
Study on calibration protocol for practically manufacturable MEMS heat flux sensor using thermal response
利用热响应对可实际制造的MEMS热通量传感器进行校准协议的研究
- 批准号:
23K13268 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
- 批准号:
2245299 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
Fabrication of 2D material devices using large-area manufacturable methods
使用大面积可制造方法制造 2D 材料器件
- 批准号:
RGPIN-2017-05810 - 财政年份:2022
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Robust manufacturable antibacterial surfaces enabled by superhard plasmon-enhanced photocatalytic materials.
由超硬等离子体增强光催化材料实现的坚固的可制造抗菌表面。
- 批准号:
EP/W012197/1 - 财政年份:2022
- 资助金额:
$ 12.46万 - 项目类别:
Research Grant
Robust manufacturable antimicrobial surfaces enabled by superhard plasmon-enhanced photocatalytic materials
由超硬等离子体增强光催化材料实现的坚固的可制造抗菌表面
- 批准号:
EP/W009501/1 - 财政年份:2022
- 资助金额:
$ 12.46万 - 项目类别:
Research Grant
Fabrication of 2D material devices using large-area manufacturable methods
使用大面积可制造方法制造 2D 材料器件
- 批准号:
RGPIN-2017-05810 - 财政年份:2021
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Stiffness tailoring for improved aeroelastic performance of manufacturable composite wings.
刚度定制可提高可制造复合材料机翼的气动弹性性能。
- 批准号:
2559479 - 财政年份:2021
- 资助金额:
$ 12.46万 - 项目类别:
Studentship