Conic Optimization Approaches for Hard Discrete Problems in Engineering
工程中硬离散问题的圆锥优化方法
基本信息
- 批准号:RGPIN-2015-05183
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Discrete optimization problems occur in a wide variety of real-life applications. For example, the person designing a factory must decide how to place the various machines of different sizes so that the factory will operate as smoothly as possible. This problem is known as the facility layout problem and is notoriously difficult because of the very large number of possible arrangements for the machines. More generally, layout problems arise from a variety of applications in engineering. For instance, complex electronic circuits, such as those used in mobile telephones, can also be modelled as facility layout problems.***Moreover, the complexity of the circuits makes it necessary to group the various components into highly connected subcircuits that can be treated as a single element for the initial layout design. This grouping of components can be modelled using a technique called graph partitioning. Graph partitioning can also be applied to the problem of assigning frequencies to mobile telephones to minimize interference. Because of the inherent complexity of these problems, the development of new and more efficient algorithms is of paramount importance.***The purpose of this research is to devise fundamental models and algorithms to efficiently compute high-quality solutions for classes of hard discrete problems arising from engineering applications. The work supported by this proposal will focus on exploiting the strength of conic optimization. Conic optimization is a mathematical technique involving optimization over matrices. A large body of research in the last 20 years has shown that it yields significantly improved algorithms for problems involving very large numbers of possibilities. This research will establish the foundations for new software to help solve large-scale facility layout and graph partitioning problems.**
离散优化问题出现在各种各样的现实生活中的应用。例如,设计工厂的人必须决定如何放置不同尺寸的各种机器,以便工厂尽可能平稳地运行。这个问题被称为设施布局问题,并且由于机器的可能布置的数量非常大而非常困难。更一般地,布局问题产生于工程中的各种应用。例如,复杂的电子电路,如移动的电话中使用的电路,也可以建模为设施布局问题。此外,电路的复杂性使得有必要将各种组件分组为高度连接的子电路,这些子电路可以被视为初始布局设计的单个元件。可以使用称为图分区的技术对组件的分组进行建模。图划分也可以应用于分配频率给移动的电话以使干扰最小化的问题。由于这些问题固有的复杂性,开发新的和更有效的算法是至关重要的。本研究的目的是设计基本的模型和算法,以有效地计算高质量的解决方案,从工程应用中产生的硬离散问题的类。这项建议所支持的工作将集中在利用锥优化的力量。圆锥优化是一种涉及矩阵优化的数学技术。在过去的20年里,大量的研究表明,它产生了显着改进的算法,涉及非常大量的可能性的问题。这项研究将为新软件奠定基础,以帮助解决大规模设施布局和图形划分问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anjos, Miguel其他文献
An update of the molecular mechanisms underlying doxorubicin plus trastuzumab induced cardiotoxicity
- DOI:
10.1016/j.lfs.2021.119760 - 发表时间:
2021-06-25 - 期刊:
- 影响因子:6.1
- 作者:
Anjos, Miguel;Fontes-Oliveira, Marta;Ferreira, Rita - 通讯作者:
Ferreira, Rita
Anjos, Miguel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anjos, Miguel', 18)}}的其他基金
Conic Optimization Approaches for Hard Discrete Problems in Engineering
工程中硬离散问题的圆锥优化方法
- 批准号:
RGPIN-2015-05183 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
NSERC/Hydro-Québec/Schneider Electric Industrial Research Chair on Optimization for the Smart Grid
NSERC/Hydro-Québec/Schneider Electric 智能电网优化工业研究主席
- 批准号:
505307-2015 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Industrial Research Chairs
Conic Optimization Approaches for Hard Discrete Problems in Engineering
工程中硬离散问题的圆锥优化方法
- 批准号:
RGPIN-2015-05183 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
NSERC/Hydro-Québec/Schneider Electric Industrial Research Chair on Optimization for the Smart Grid
NSERC/Hydro-Québec/Schneider Electric 智能电网优化工业研究主席
- 批准号:
505307-2015 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Industrial Research Chairs
Discrete Nonlinear Optimization in Engineering
工程中的离散非线性优化
- 批准号:
1000226165-2011 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Canada Research Chairs
NSERC/Hydro-Québec/Schneider Electric Industrial Research Chair on Optimization for the Smart Grid
NSERC/Hydro-Québec/Schneider Electric 智能电网优化工业研究主席
- 批准号:
505307-2015 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Industrial Research Chairs
Conic Optimization Approaches for Hard Discrete Problems in Engineering
工程中硬离散问题的圆锥优化方法
- 批准号:
RGPIN-2015-05183 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Discrete Nonlinear Optimization in Engineering
工程中的离散非线性优化
- 批准号:
1226165-2011 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Canada Research Chairs
Conic Optimization Approaches for Hard Discrete Problems in Engineering
工程中硬离散问题的圆锥优化方法
- 批准号:
RGPIN-2015-05183 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Decomposition methods for maintenance planning of hydro-turbines
水轮机检修计划分解方法
- 批准号:
490659-2015 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Engage Grants Program
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Advanced Large-Scale Optimization Approaches to Solve Modern Circuit Layout Problems
解决现代电路布局问题的先进大规模优化方法
- 批准号:
RGPIN-2016-03833 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Decision Support for Urban Water Management - Enhanced Technology Design, Modelling and Optimization Approaches for Collection Systems
城市水管理决策支持 - 收集系统的增强技术设计、建模和优化方法
- 批准号:
RGPIN-2019-05608 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Development of ensemble optimization approaches for managing nested multi-level environmental risks
开发管理嵌套多级环境风险的集成优化方法
- 批准号:
RGPIN-2019-05565 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Inventory control, revenue management and pricing: Data-driven stochastic optimization approaches
库存控制、收入管理和定价:数据驱动的随机优化方法
- 批准号:
RGPIN-2020-04213 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
New Machine Learning Approaches for Discrete Optimization
用于离散优化的新机器学习方法
- 批准号:
RGPIN-2020-06560 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
CHEMICAL SCREENING AND OPTIMIZATION FACILITY (CSOF) - CHEMICAL OPTIMIZATION APPROACHES
化学筛选和优化设施 (CSOF) - 化学优化方法
- 批准号:
10710755 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Machine learning approaches for the discovery, repurposing, and optimization of natural products with therapeutic potential
用于发现、重新利用和优化具有治疗潜力的天然产物的机器学习方法
- 批准号:
10693375 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Unifying Information- and Optimization-Theoretic Approaches for Modeling and Training Generative Adversarial Networks
统一信息理论和优化理论方法来建模和训练生成对抗网络
- 批准号:
2134256 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant
New Approaches to Questions in Sampling, Counting, and Optimization
解决采样、计数和优化问题的新方法
- 批准号:
2151283 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
New Machine Learning Approaches for Discrete Optimization
用于离散优化的新机器学习方法
- 批准号:
RGPIN-2020-06560 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual