Optimization- and learning-based algorithms for medical image computing
基于优化和学习的医学图像计算算法
基本信息
- 批准号:RGPIN-2014-05076
- 负责人:
- 金额:$ 2.54万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1) Problems, difficulties and prior art: **Finding automatically and efficiently meaningful regions in a numerical image, for instance an organ in a 3D medical scan or a person in a photograph, is a research problem of paramount importance within the computer vision and medical imaging communities for its theoretical and methodological challenges, and numerous useful applications.*Current major application areas include medical image analysis, robotics, human-computer interaction, image retrieval and editing, security and surveillance, navigation, manufacturing, remote sensing and many others. For instance, in medical imaging, automatic detection and visualization of the 3D surfaces of anatomic structures is essential to efficient disease diagnosis/treatment/follow-up, surgery planning, radiologic reporting and health care practices at large. From a technical point of view, such detection problems are difficult and often application-dependent because of the various and complex appearances of medical scans. Mostly based on classical compute-vision techniques, the methods in the literature can handle only a small fraction of real-world problems because of the following reasons: (i) they do not take full advantage of the available prior knowledge, i.e., the contextual information that a machine can learn from a set of training structures/surfaces produced by a human expert. The mathematical descriptions used so far to model such knowledge are not complex enough to reflect human understanding of medical scans; and (ii) they may be very slow in many real-world scenarios.**2) Objectives: **The overall objective of this research program is to develop fully trained, efficient (real-time) and theoretically sound algorithms for the automatic detection and visualization of the 3D surfaces of various organs from medical scans. Specific objectives include:**(i) Theoretical objectives: We intend to define novel energy functionals based on information-theoretic measures and recent advances in machine learning. We further intend to design original and efficient optimization techniques for such functionals. The overall purpose is to determine solutions which embody important prior knowledge that has been either omitted or oversimplified in current algorithms; and**(ii) Practical objectives: In practice, we plan to devise our technical investigations to solving various challenging and important problems, e.g., finding the 3D structures of the aorta, spine, heart, liver, prostate, brain tumors, as well as multiple abdominal organs, just to name a few examples.**3) Scientific approach:**(i) Methodology: Our methodology is based on the following main steps: (a) building sophisticated functionals that describe contextual knowledge about the structures of interest (e.g., shape, geometric relations between several organs and high-level medical knowledge) using training data built by human experts; (b) investigating mathematically and solving numerically the minimization of the new functionals; and (d) evaluating experimentally the algorithms by comparisons to ground-truth data built by human experts.**(ii) Technical and theoretical novelty/significance: We anticipate that our formulations lead to challenging optimization problems, which cannot be solved directly with standard techniques. We intend to derive original approximations or bounds, thereby designing novel and efficient optimization techniques that are still not in use in computer vision and medical imaging. We intend to focus on optimization-transfer and convex relaxation approaches. We anticipate the solutions we intend to develop will (a) be applicable to a breadth of problems; and (ii) yield state-of-the-art performances in regard to accuracy and speed.
1)问题、困难和现有技术:** 在数字图像中自动有效地找到有意义的区域,例如3D医学扫描中的器官或照片中的人,是计算机视觉和医学成像领域中最重要的研究问题,因为它的理论和方法挑战以及许多有用的应用。目前的主要应用领域包括医学图像分析、机器人技术、人机交互、图像检索和编辑、安全和监控、导航、制造、遥感等。例如,在医学成像中,解剖结构的3D表面的自动检测和可视化对于有效的疾病诊断/治疗/随访、手术规划、放射学报告和整个医疗保健实践至关重要。从技术的角度来看,这样的检测问题是困难的,并且通常依赖于应用,因为医学扫描的各种和复杂的外观。大多数基于经典的计算机视觉技术,文献中的方法只能处理一小部分现实世界的问题,原因如下:(i)它们没有充分利用可用的先验知识,即,机器可以从由人类专家产生的一组训练结构/表面学习的上下文信息。到目前为止,用于对这些知识进行建模的数学描述还不够复杂,无法反映人类对医学扫描的理解;(ii)在许多现实世界的场景中,它们可能非常缓慢。2)目的:** 该研究计划的总体目标是开发经过充分训练的,有效的(实时)和理论上合理的算法,用于自动检测和可视化医学扫描中各种器官的3D表面。具体目标包括:**(i)理论目标:我们打算基于信息理论测量和机器学习的最新进展定义新的能量泛函。我们还打算设计原始的和有效的优化技术,这样的泛函。总体目的是确定体现在当前算法中被省略或过度简化的重要先验知识的解决方案;以及 **(ii)实际目标:在实践中,我们计划设计我们的技术调查来解决各种具有挑战性和重要的问题,例如,查找主动脉、脊柱、心脏、肝脏、前列腺、脑肿瘤以及多个腹部器官的3D结构,仅举几例。** 3)科学方法:**(i)方法:我们的方法基于以下主要步骤:(a)构建描述有关感兴趣结构的背景知识的复杂泛函(例如,形状,几个器官之间的几何关系和高级医学知识)使用人类专家建立的训练数据;(B)数学研究和数值求解新泛函的最小化;以及(d)通过与人类专家建立的地面实况数据进行比较,对算法进行实验评估。(ii)技术和理论新奇/重要性:我们预计我们的配方会导致具有挑战性的优化问题,这些问题无法直接用标准技术解决。我们打算推导出原始的近似值或边界,从而设计出在计算机视觉和医学成像中尚未使用的新颖而有效的优化技术。我们打算专注于优化转移和凸松弛方法。我们预计我们打算开发的解决方案将(a)适用于广泛的问题;(ii)在准确性和速度方面产生最先进的性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BenAyed, Ismail其他文献
BenAyed, Ismail的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BenAyed, Ismail', 18)}}的其他基金
Optimization and learning algorithms for medical image interpretation
医学图像判读的优化和学习算法
- 批准号:
RGPIN-2019-05954 - 财政年份:2022
- 资助金额:
$ 2.54万 - 项目类别:
Discovery Grants Program - Individual
Optimization and learning algorithms for medical image interpretation
医学图像判读的优化和学习算法
- 批准号:
RGPIN-2019-05954 - 财政年份:2021
- 资助金额:
$ 2.54万 - 项目类别:
Discovery Grants Program - Individual
Optimization and learning algorithms for medical image interpretation
医学图像判读的优化和学习算法
- 批准号:
RGPAS-2019-00080 - 财政年份:2020
- 资助金额:
$ 2.54万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Optimization and learning algorithms for medical image interpretation
医学图像判读的优化和学习算法
- 批准号:
RGPIN-2019-05954 - 财政年份:2020
- 资助金额:
$ 2.54万 - 项目类别:
Discovery Grants Program - Individual
Optimization and learning algorithms for medical image interpretation
医学图像判读的优化和学习算法
- 批准号:
RGPAS-2019-00080 - 财政年份:2019
- 资助金额:
$ 2.54万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Optimization and learning algorithms for medical image interpretation
医学图像判读的优化和学习算法
- 批准号:
RGPIN-2019-05954 - 财政年份:2019
- 资助金额:
$ 2.54万 - 项目类别:
Discovery Grants Program - Individual
Automated detection and grading of Diabetic Retinopathy using deep convolutional neural networks
使用深度卷积神经网络自动检测和分级糖尿病视网膜病变
- 批准号:
531463-2018 - 财政年份:2018
- 资助金额:
$ 2.54万 - 项目类别:
Engage Grants Program
Optimization- and learning-based algorithms for medical image computing
基于优化和学习的医学图像计算算法
- 批准号:
RGPIN-2014-05076 - 财政年份:2017
- 资助金额:
$ 2.54万 - 项目类别:
Discovery Grants Program - Individual
Automated segmentation of cardiac structures in magnetic resonance imaging via deep convolutional neural networks
通过深度卷积神经网络自动分割磁共振成像中的心脏结构
- 批准号:
520587-2017 - 财政年份:2017
- 资助金额:
$ 2.54万 - 项目类别:
Engage Grants Program
Optimization- and learning-based algorithms for medical image computing
基于优化和学习的医学图像计算算法
- 批准号:
RGPIN-2014-05076 - 财政年份:2016
- 资助金额:
$ 2.54万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 2.54万 - 项目类别:
Continuing Grant
Optimization-based Implicit Deep Learning, Theory and Applications
基于优化的隐式深度学习、理论与应用
- 批准号:
2309810 - 财政年份:2023
- 资助金额:
$ 2.54万 - 项目类别:
Continuing Grant
Computational Infrastructure for Automated Force Field Development and Optimization
用于自动力场开发和优化的计算基础设施
- 批准号:
10699200 - 财政年份:2023
- 资助金额:
$ 2.54万 - 项目类别:
Coupling PDE-Based Computational Inversion and Learning Via Weighted Optimization
通过加权优化耦合基于偏微分方程的计算反演和学习
- 批准号:
2309802 - 财政年份:2023
- 资助金额:
$ 2.54万 - 项目类别:
Standard Grant
Development and application of learning theory for uncertainty in Bayesian deep learning based on multi-objective optimization
基于多目标优化的贝叶斯深度学习不确定性学习理论发展及应用
- 批准号:
23K16948 - 财政年份:2023
- 资助金额:
$ 2.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Optimization of Neurophysiologic Biomarkers for Rehabilitation Interventions in Veterans with Chronic Psychosis
慢性精神病退伍军人康复干预的神经生理学生物标志物的优化
- 批准号:
10753415 - 财政年份:2023
- 资助金额:
$ 2.54万 - 项目类别:
Developing Machine Learning Models for Decision Support and Allocation Optimization in Heart Transplantation
开发用于心脏移植决策支持和分配优化的机器学习模型
- 批准号:
10735348 - 财政年份:2023
- 资助金额:
$ 2.54万 - 项目类别:
A Study on Improvement of Learning Motivation by Personal Optimization of Achievement Goals of Digital Educational Materials Based on Biometric Information
基于生物特征信息的数字教材成绩目标个人优化提高学习动机的研究
- 批准号:
23K12841 - 财政年份:2023
- 资助金额:
$ 2.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of a Fast and Accurate Computational Method through Learning-based Iterative Alternating Optimization
通过基于学习的迭代交替优化开发快速准确的计算方法
- 批准号:
23K16953 - 财政年份:2023
- 资助金额:
$ 2.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mathematical Model-Based Optimization of CRT Response in Ischemia
基于数学模型的缺血 CRT 反应优化
- 批准号:
10734486 - 财政年份:2023
- 资助金额:
$ 2.54万 - 项目类别: