Optimization of phase transformation for the development of fatigue resistant materials
优化相变以开发抗疲劳材料
基本信息
- 批准号:RGPIN-2014-05127
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The development of materials with improved fatigue resistance and their characterization methods is a growing field of research as it allows the optimization of engineering components without compromising safety. One original way to improve the fatigue resistance of metals is to optimize the benefits of phase transformation during the propagation of cracks. The survey of literature reveals that phase transformation can increase fatigue strength by 50% in some specific conditions. The main benefits of phase transformation are to consume mechanical energy and to produce compressive residual stresses closing the crack tip. On the other hand, phase transformation under cyclic loads is complex and its efficiency is influenced by several parameters such as the environment, the microstructure, the loading conditions. A better understanding of 1) the thermodynamic and kinetic of phase transformation at crack tip, and 2) its effect on the crack propagation mechanisms, could lead to the development of advanced materials with improved fatigue resistance. These are the objectives of my discovery grant program.* *At completion of the first five years, the knowledge and experimental results I will have developed will easily be extended to engineering applications such as the optimization of steels for fatigue critical applications (e.g. hydraulic turbine runners and landing gears) and the control of mechanical and environmental conditions to avoid catastrophic failures. This is of significant importance for many local and global industries with whom I am currently collaborating (e.g. Hydro-Quebec, Alstom, Velan and Héroux Devtek). The societal role of my research program is to contribute to the reduction of fuel consumption and green house emissions as the developed materials will be used to design lighter products. **The proposed research program is unique as it seeks a deep understanding and control of phase transformation at crack tip, under cyclic loads in a variety of environments. Very limited work on this topic has been published as such phase transformations are conventionally used to improve the ductility and toughness of materials under monotonic stresses. The specificity of my research programs relies on the interest I have toward the quantification and understanding of fatigue damage mechanisms and their relation to the material microstructure. Such a detail research tackling multidisciplinary challenges, in mechanical and material engineering, has not been performed yet.**My team has the skills and knowledge necessary to perform the proposed work as we have been working on the fatigue behavior of metallic materials since 2006 and on failure analysis since 2001. We have developed a variety of advanced experimental and analytical strategies to measure, observe and understand fatigue failure mechanisms in metals and more specifically in steels and aluminum alloys. In the province of Quebec, I am considered by my peers and by industrial partners one of the most experimented researcher on the topic. **Finally, the research program I propose will contribute to the training of 4 highly qualified engineers and 5 interns that will acquire skills and knowledge in physical metallurgy, failure analysis and fracture mechanic. This type of background is prized in Quebec, especially by the aerospace, transport and energy industries. This type of training has unfortunately been uncovered in Quebec during the last five years especially with the closure, in 2008, of the material science undergraduate program of Ecole Polytechnique de Montreal. The impact of loosing this specialized formation at the undergraduate level is giving a plus value to my contribution to knowledge and to the originality of my training program.
开发具有改进的抗疲劳性的材料及其表征方法是一个不断发展的研究领域,因为它可以在不影响安全性的情况下优化工程部件。提高金属抗疲劳性的一种原始方法是优化裂纹扩展期间相变的益处。文献综述表明,在某些特定条件下,相变可使疲劳强度提高50%以上。相变的主要好处是消耗机械能和产生闭合裂纹尖端的压缩残余应力。另一方面,循环载荷下的相变是复杂的,其效率受到多个参数的影响,如环境,微观结构,加载条件。 更好地理解1)裂纹尖端相变的热力学和动力学,以及2)其对裂纹扩展机制的影响,可以导致具有改进的抗疲劳性的先进材料的开发。这就是我的发现资助计划的目标。* 在第一个五年结束时,我将开发的知识和实验结果将很容易扩展到工程应用中,例如疲劳关键应用(例如液压涡轮机转轮和起落架)的钢材优化以及机械和环境条件的控制,以避免灾难性故障。这对于我目前正在合作的许多本地和全球行业(例如Hydro-Quebec,Alstom,Velan和Héroux Devtek)具有重要意义。我的研究项目的社会作用是为减少燃料消耗和绿色房屋排放做出贡献,因为开发的材料将用于设计更轻的产品。** 拟议的研究计划是独一无二的,因为它寻求深入了解和控制裂纹尖端的相变,在各种环境中的循环载荷下。关于这个主题的工作非常有限,因为这种相变通常用于提高单调应力下材料的延展性和韧性。我的研究项目的特殊性依赖于我对疲劳损伤机制的量化和理解及其与材料微观结构的关系的兴趣。在机械和材料工程领域,还没有进行过如此详细的研究,以应对多学科的挑战。我的团队拥有执行拟议工作所需的技能和知识,因为我们自2006年以来一直致力于金属材料的疲劳行为,自2001年以来一直致力于失效分析。我们开发了各种先进的实验和分析策略,以测量,观察和了解金属,特别是钢和铝合金的疲劳失效机制。在魁北克省,我的同行和工业伙伴认为我是这方面经验最丰富的研究人员之一。** 最后,我提出的研究计划将有助于培养4名高素质的工程师和5名实习生,他们将获得物理冶金,失效分析和断裂力学方面的技能和知识。这种背景在魁北克很受欢迎,尤其是航空航天、运输和能源行业。不幸的是,在过去的五年里,这种类型的培训在魁北克被发现,特别是在2008年,蒙特利尔理工学院的材料科学本科课程被关闭。在本科阶段失去这种专业化的影响,使我对知识的贡献和我的培训计划的独创性更加重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brochu, Myriam其他文献
Effect of shot peening on short crack propagation in 300M steel
- DOI:
10.1016/j.ijfatigue.2019.105346 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:6
- 作者:
Bag, Amrita;Levesque, Martin;Brochu, Myriam - 通讯作者:
Brochu, Myriam
Propagation of short fatigue cracks in permanent and semi-solid mold 357 aluminum alloy
- DOI:
10.1016/j.ijfatigue.2011.08.009 - 发表时间:
2012-03-01 - 期刊:
- 影响因子:6
- 作者:
Brochu, Myriam;Verreman, Yves;Bouchard, Dominique - 通讯作者:
Bouchard, Dominique
Characterization of bending vibration fatigue of SLM fabricated Ti-6A1-4V
- DOI:
10.1016/j.ijfatigue.2017.02.005 - 发表时间:
2017-06-01 - 期刊:
- 影响因子:6
- 作者:
Ellyson, Benjamin;Brochu, Mathieu;Brochu, Myriam - 通讯作者:
Brochu, Myriam
Effect of different shot peening conditions on the fatigue life of 300 M steel submitted to high stress amplitudes
- DOI:
10.1016/j.ijfatigue.2019.105274 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:6
- 作者:
Bag, Amrita;Delbergue, Dorian;Brochu, Myriam - 通讯作者:
Brochu, Myriam
A novel approach for quantifying hydrogen embrittlement using side-grooved CT samples
- DOI:
10.1016/j.engfracmech.2022.108324 - 发表时间:
2022-03-21 - 期刊:
- 影响因子:5.4
- 作者:
Laliberte-Riverin, Simon;Brochu, Myriam - 通讯作者:
Brochu, Myriam
Brochu, Myriam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brochu, Myriam', 18)}}的其他基金
Fatigue damage of advanced metallic materials
先进金属材料的疲劳损伤
- 批准号:
CRC-2019-00302 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Canada Research Chairs
Optimization of mechanically induced phase transformation at crack tip in metal for improved crack growth resistance
优化金属裂纹尖端的机械诱导相变以提高抗裂纹扩展能力
- 批准号:
RGPIN-2020-05622 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Optimization of mechanically induced phase transformation at crack tip in metal for improved crack growth resistance
优化金属裂纹尖端的机械诱导相变以提高抗裂纹扩展能力
- 批准号:
RGPIN-2020-05622 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Fatigue Damage Of Advanced Metallic Materials
先进金属材料的疲劳损伤
- 批准号:
CRC-2019-00302 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Canada Research Chairs
Fatigue and corrosion-fatigue behavior of 13Cr-4Ni steels and additively manufactured alloys, for application to large size components such as hydraulic turbines and machineries
13Cr-4Ni 钢和增材制造合金的疲劳和腐蚀疲劳行为,适用于水轮机和机械等大型部件
- 批准号:
530064-2018 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Optimization of mechanically induced phase transformation at crack tip in metal for improved crack growth resistance
优化金属裂纹尖端的机械诱导相变以提高抗裂纹扩展能力
- 批准号:
RGPIN-2020-05622 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Fatigue damage of advanced metallic materials
先进金属材料的疲劳损伤
- 批准号:
CRC-2019-00302 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Canada Research Chairs
Fatigue and corrosion-fatigue behavior of 13Cr-4Ni steels and additively manufactured alloys, for application to large size components such as hydraulic turbines and machineries
13Cr-4Ni 钢和增材制造合金的疲劳和腐蚀疲劳行为,适用于水轮机和机械等大型部件
- 批准号:
530064-2018 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Prévoir le comportement mécanique des matériaux par la caractérisation de la topographie et de la microstructure
初步了解地形和微观结构的材料机械性能
- 批准号:
RTI-2020-00626 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Research Tools and Instruments
Fatigue and corrosion-fatigue behavior of 13Cr-4Ni steels and additively manufactured alloys, for application to large size components such as hydraulic turbines and machineries
13Cr-4Ni 钢和增材制造合金的疲劳和腐蚀疲劳行为,适用于水轮机和机械等大型部件
- 批准号:
530064-2018 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
均相液相生物芯片检测系统的构建及其在癌症早期诊断上的应用
- 批准号:82372089
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
PCBP1和PCBP2调控cGAS的相变和酶活的机制研究
- 批准号:32370928
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
HNRNPK-Xist液液相分离促进X染色体失活
- 批准号:32100547
- 批准年份:2021
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
Rbm14的相分离在胚胎发育中的功能及作用机理研究
- 批准号:32000556
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
蛋白质液-液相变环境中DNA G-四链体结构的形成与功能研究
- 批准号:32000866
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
Hedgehog信号通路与应激颗粒的交互作用及其功能研究
- 批准号:31970755
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimization of mechanically induced phase transformation at crack tip in metal for improved crack growth resistance
优化金属裂纹尖端的机械诱导相变以提高抗裂纹扩展能力
- 批准号:
RGPIN-2020-05622 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Optimization of mechanically induced phase transformation at crack tip in metal for improved crack growth resistance
优化金属裂纹尖端的机械诱导相变以提高抗裂纹扩展能力
- 批准号:
RGPIN-2020-05622 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Optimization of mechanically induced phase transformation at crack tip in metal for improved crack growth resistance
优化金属裂纹尖端的机械诱导相变以提高抗裂纹扩展能力
- 批准号:
RGPIN-2020-05622 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Optimization of phase transformation for the development of fatigue resistant materials
优化相变以开发抗疲劳材料
- 批准号:
RGPIN-2014-05127 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Optimization of phase transformation for the development of fatigue resistant materials
优化相变以开发抗疲劳材料
- 批准号:
RGPIN-2014-05127 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Optimization of phase transformation for the development of fatigue resistant materials
优化相变以开发抗疲劳材料
- 批准号:
RGPIN-2014-05127 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Optimization of phase transformation for the development of fatigue resistant materials
优化相变以开发抗疲劳材料
- 批准号:
RGPIN-2014-05127 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Optimization of phase transformation for the development of fatigue resistant materials
优化相变以开发抗疲劳材料
- 批准号:
RGPIN-2014-05127 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual