Deep learning-based active noise control for airplane cockpit
基于深度学习的飞机驾驶舱主动噪声控制
基本信息
- 批准号:533690-2018
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Vintec Acoustics focuses on providing solutions to various engineering problems related to acoustics, including high-performance sound equipment design and control of noise and vibration. Industrial fields such as construction sites, automobiles or aircraft generate continuous noise, and this noise needs to be effectively reduced in order to improve workers' safety and work efficiency. There are two approaches to noise suppression. The first is passive noise control (PNC), which uses structures that physically block or absorb sound. However, PNC offers limited soundproofing performance, and can be very expensive. The second option is active noise control (ANC), which cancels the unwanted noise from the source sound by generating anti-noise signals which have the opposite phase to the noise. ANC is well-known to be effective at removing noise in the low-frequency band, but its traditional algorithms tend to be unreliable filters that do not accurately capture noise sources that are nonlinear and have complex patterns. To address this issue, filters based on deep neural networks are emerging as an alternative approach, because they are known to enable effective modeling for nonlinear systems. Noise suppression using convolutional neural networks (CNNs) as an acoustic model has been applied mainly in automatic speech recognition and voice quality enhancement. However, the development of deep learning-based noise control for industrial applications has received little attention. In this project, the applicant and Vintec Acoustics aim to develop an ANC method with a new algorithm that uses advanced artificial intelligence techniques (i.e., deep learning) and is specialized in eliminating noise from aircraft cockpits. Deep CNNs are core modules to detect and estimate the spectral features of the noise from an input sound. It will also be necessary to build a new lightweight CNN structure that can reduce computational costs, because aircraft noise reduction requires real-time processing. In an aircraft, any phase shift (time delay) could have catastrophic consequences. It is expected that the system developed in this project will serve as a template for various industrial fields requiring real-time noise reduction technology.**
Vintec Acoustics专注于为各种与声学相关的工程问题提供解决方案,包括高性能音响设备设计和噪声和振动控制。建筑工地、汽车或飞机等工业领域会产生持续的噪音,为了提高工人的安全和工作效率,需要有效地降低这种噪音。噪声抑制有两种方法。第一种是被动噪声控制(PNC),它使用物理阻挡或吸收声音的结构。然而,PNC提供有限的隔音性能,并且可能非常昂贵。第二种选择是主动噪声控制(ANC),它通过产生与噪声相位相反的抗噪声信号来消除源声音中不需要的噪声。众所周知,ANC在去除低频噪声方面非常有效,但其传统算法往往是不可靠的滤波器,不能准确捕获非线性和复杂模式的噪声源。为了解决这个问题,基于深度神经网络的滤波器正在成为一种替代方法,因为它们能够有效地对非线性系统进行建模。以卷积神经网络(cnn)为声学模型的噪声抑制主要应用于语音自动识别和语音质量增强。然而,基于深度学习的噪声控制在工业应用中的发展却很少受到关注。在这个项目中,申请人和Vintec声学的目标是开发一种采用先进人工智能技术(即深度学习)的新算法的ANC方法,专门用于消除飞机驾驶舱的噪音。深度cnn是检测和估计输入声音噪声频谱特征的核心模块。此外,还需要建立一种新的轻型CNN结构,以降低计算成本,因为飞机降噪需要实时处理。在飞机上,任何相移(时间延迟)都可能造成灾难性的后果。预计本项目开发的系统将作为需要实时降噪技术的各种工业领域的模板
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cha, YoungJin其他文献
Cha, YoungJin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cha, YoungJin', 18)}}的其他基金
Deep learning based structural health monitoring with autonomous UAVs
基于深度学习的自主无人机结构健康监测
- 批准号:
RGPIN-2022-04120 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Developing an Advanced Hybrid System of Structural Health Monitoring
开发先进的结构健康监测混合系统
- 批准号:
RGPIN-2016-05923 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Developing an Advanced Hybrid System of Structural Health Monitoring
开发先进的结构健康监测混合系统
- 批准号:
RGPIN-2016-05923 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Developing an Advanced Hybrid System of Structural Health Monitoring
开发先进的结构健康监测混合系统
- 批准号:
RGPIN-2016-05923 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Developing an Advanced Hybrid System of Structural Health Monitoring
开发先进的结构健康监测混合系统
- 批准号:
RGPIN-2016-05923 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Developing an Advanced Hybrid System of Structural Health Monitoring
开发先进的结构健康监测混合系统
- 批准号:
RGPIN-2016-05923 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Autonomous train wheel damage detection using advanced deep learning
使用先进的深度学习进行自主火车车轮损坏检测
- 批准号:
515025-2017 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Unsupervised machine learning method for structural damage assessement
用于结构损伤评估的无监督机器学习方法
- 批准号:
500937-2016 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Developing an Advanced Hybrid System of Structural Health Monitoring
开发先进的结构健康监测混合系统
- 批准号:
RGPIN-2016-05923 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
- 批准号:
2334628 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
DeepMARA - Deep Reinforcement Learning based Massive Random Access Toward Massive Machine-to-Machine Communications
DeepMARA - 基于深度强化学习的大规模随机访问实现大规模机器对机器通信
- 批准号:
EP/Y028252/1 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Fellowship
Co-creation between content-generating AI and humans based on deep learning
基于深度学习的内容生成人工智能与人类的共同创造
- 批准号:
23K04201 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Security Evaluation Method Against Deep-Learning-Based Side-Channel Attacks Exploiting Physical Behavior of Cryptographic Hardware
针对利用密码硬件物理行为的基于深度学习的侧信道攻击的安全评估方法
- 批准号:
23K11102 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
TruDetect: Trustworthy Deep-Learning based Hardware Trojan Detection
TruDetect:值得信赖的基于深度学习的硬件木马检测
- 批准号:
EP/X036960/1 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Research Grant
Optimization-based Implicit Deep Learning, Theory and Applications
基于优化的隐式深度学习、理论与应用
- 批准号:
2309810 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
Spatial Calibration of Head-Mounted Displays Based on Implicit Function Representation of Light Fields Using Deep Learning
基于深度学习光场隐式函数表示的头戴式显示器空间校准
- 批准号:
23K16920 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deep learning-based prediction model for intraoperative neuromuscular blockade
基于深度学习的术中神经肌肉阻滞预测模型
- 批准号:
23K14406 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Linking endotype and phenotype to understand COPD heterogeneity via deep learning and network science
通过深度学习和网络科学将内型和表型联系起来以了解 COPD 异质性
- 批准号:
10569732 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别: