Deep learning based structural health monitoring with autonomous UAVs
基于深度学习的自主无人机结构健康监测
基本信息
- 批准号:RGPIN-2022-04120
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An automated reliable, efficient, and robust health monitoring system is urgently needed to detect damaged infrastructure in Canada's aging bridge system. Many vibration-based methods have been developed to detect bridge damage using contact sensors. However, these methods are unreliable and expensive, because they are vulnerable to uncertainties, noise, and environmental changes and require many installed sensors. Visual inspection by trained engineers is the current main approach, but is also costly, and biannual inspection cannot adequately prevent sudden collapse. Recently, computer vision (CV)-based damage detection methods have been proposed to support visual inspection. At present, this method is limited to detecting only one damage type. Additionally, it uses weak damage sensitive features extracted from traditional image processing and traditional machine learning to classify damage features. Thus, it is not robust to changes in the lighting conditions of input images. Since 2017, I have pioneered deep learning (DL)-based damage detection to overcome the limitations of traditional CV-based approaches through my previous NSERC Discovery Grant. This research has received worldwide interest, and numerous follow-up studies have been conducted. I also initiated the development of an autonomous drone flight method to enable flight in global positioning system (GPS) denied areas using an ultrasonic beacon system (UBS). These areas include the space beneath a bridge deck, where GPS is unavailable, and safety-critical areas, where important structural members and their connections are found. However, extensive investigation is required to develop a fully automated bridge inspection and management system. Such a system is the long-term goal of the proposed research program. The short-term objectives of this proposal are to (1) develop pixel-level multiple-damage identification based on advanced DL methods for external and internal damage using regular and thermal cameras, (2) develop an autonomous flight method for an entire bridge system without using GPS or UBS, (3) develop a holistic three-dimensional (3D) damage mapping method for efficient bridge management, and (4) integrate of all the developed methods for the fully automated bridge inspection system. This automated inspection system will be reliable, accurate, and cost-efficient by providing an explicit, visual, and holistic 3D damage map for efficient bridge management. Automation enables frequent inspection and can prevent sudden collapse by detecting early-stage internal and external damage. This research will produce a prototype of the automated bridge inspection system, which will be relevant to artificial intelligence and mechanical and electrical industries worldwide. The prototype will be developed using a DL method and the autonomous flight drone system with wireless auto-charging. Accordingly, University of Manitoba continues to be a world leader in this research topic.
迫切需要一个自动化的可靠,高效和强大的健康监测系统来检测加拿大老化桥梁系统中受损的基础设施。许多基于振动的方法已经被开发来使用接触传感器检测桥梁损伤。然而,这些方法不可靠且昂贵,因为它们容易受到不确定性、噪声和环境变化的影响,并且需要安装许多传感器。由受过训练的工程师进行目视检查是目前的主要方法,但费用也很高,而且一年两次的检查不足以防止突然倒塌。最近,已经提出了基于计算机视觉(CV)的损伤检测方法来支持视觉检测。目前,该方法仅限于检测一种损伤类型。此外,它使用传统的图像处理和传统的机器学习提取的弱损伤敏感特征进行分类损伤特征。因此,对于输入图像的照明条件的变化不鲁棒。自2017年以来,我通过之前的NSERC Discovery Grant开创了基于深度学习(DL)的损伤检测,以克服传统基于CV的方法的局限性。这项研究受到了全世界的关注,并进行了许多后续研究。我还发起了一种自主无人机飞行方法的开发,以便使用超声波信标系统(UBS)在全球定位系统(GPS)拒绝的区域飞行。这些区域包括无法使用GPS的桥面下方空间,以及发现重要结构构件及其连接的安全关键区域。然而,需要进行广泛的调查,以开发全自动桥梁检查和管理系统。这样一个系统是拟议研究计划的长期目标。本提案的短期目标是:(1)使用常规和热成像摄像机,基于外部和内部损伤的先进DL方法,开发像素级多损伤识别;(2)开发一种不使用GPS或UBS的整个桥梁系统的自主飞行方法;(3)开发一种整体三维(3D)损伤映射方法,用于有效的桥梁管理,(4)将已开发的各种方法集成到全自动桥梁检测系统中。 该自动化检测系统将通过提供明确、可视化和整体的3D损伤图来实现可靠、准确和经济高效的桥梁管理。自动化可实现频繁检查,并可通过检测早期内部和外部损坏来防止突然倒塌。这项研究将产生一个自动化桥梁检测系统的原型,这将与人工智能和机械和电气行业有关。该原型将使用DL方法和具有无线自动充电的自主飞行无人机系统进行开发。因此,马尼托巴大学继续在这一研究课题的世界领先地位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cha, YoungJin其他文献
Cha, YoungJin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cha, YoungJin', 18)}}的其他基金
Developing an Advanced Hybrid System of Structural Health Monitoring
开发先进的结构健康监测混合系统
- 批准号:
RGPIN-2016-05923 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Developing an Advanced Hybrid System of Structural Health Monitoring
开发先进的结构健康监测混合系统
- 批准号:
RGPIN-2016-05923 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Developing an Advanced Hybrid System of Structural Health Monitoring
开发先进的结构健康监测混合系统
- 批准号:
RGPIN-2016-05923 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Deep learning-based active noise control for airplane cockpit
基于深度学习的飞机驾驶舱主动噪声控制
- 批准号:
533690-2018 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Engage Grants Program
Developing an Advanced Hybrid System of Structural Health Monitoring
开发先进的结构健康监测混合系统
- 批准号:
RGPIN-2016-05923 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Autonomous train wheel damage detection using advanced deep learning
使用先进的深度学习进行自主火车车轮损坏检测
- 批准号:
515025-2017 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Engage Grants Program
Developing an Advanced Hybrid System of Structural Health Monitoring
开发先进的结构健康监测混合系统
- 批准号:
RGPIN-2016-05923 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Unsupervised machine learning method for structural damage assessement
用于结构损伤评估的无监督机器学习方法
- 批准号:
500937-2016 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Engage Grants Program
Developing an Advanced Hybrid System of Structural Health Monitoring
开发先进的结构健康监测混合系统
- 批准号:
RGPIN-2016-05923 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
- 批准号:
2334628 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
DeepMARA - Deep Reinforcement Learning based Massive Random Access Toward Massive Machine-to-Machine Communications
DeepMARA - 基于深度强化学习的大规模随机访问实现大规模机器对机器通信
- 批准号:
EP/Y028252/1 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Fellowship
Optimization-based Implicit Deep Learning, Theory and Applications
基于优化的隐式深度学习、理论与应用
- 批准号:
2309810 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Continuing Grant
Security Evaluation Method Against Deep-Learning-Based Side-Channel Attacks Exploiting Physical Behavior of Cryptographic Hardware
针对利用密码硬件物理行为的基于深度学习的侧信道攻击的安全评估方法
- 批准号:
23K11102 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Co-creation between content-generating AI and humans based on deep learning
基于深度学习的内容生成人工智能与人类的共同创造
- 批准号:
23K04201 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spatial Calibration of Head-Mounted Displays Based on Implicit Function Representation of Light Fields Using Deep Learning
基于深度学习光场隐式函数表示的头戴式显示器空间校准
- 批准号:
23K16920 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deep learning-based prediction model for intraoperative neuromuscular blockade
基于深度学习的术中神经肌肉阻滞预测模型
- 批准号:
23K14406 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
TruDetect: Trustworthy Deep-Learning based Hardware Trojan Detection
TruDetect:值得信赖的基于深度学习的硬件木马检测
- 批准号:
EP/X036960/1 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Research Grant
Linking endotype and phenotype to understand COPD heterogeneity via deep learning and network science
通过深度学习和网络科学将内型和表型联系起来以了解 COPD 异质性
- 批准号:
10569732 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别: