Developing an Advanced Hybrid System of Structural Health Monitoring
开发先进的结构健康监测混合系统
基本信息
- 批准号:RGPIN-2016-05923
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There is an essential and urgent need in engineering research communities for a reliable, efficient and robust structural health monitoring system to support the monitoring of aging structures like bridges. Many different vibration-based methods have been developed to detect damage in infrastructure, which are broadly categorized as data- and model-based approaches. However, damage detection methods that can account for the complexity of such problems as ambient temperature changes and non-uniform distribution of temperature across the bridges, still need to be developed. There is no best method in terms of accuracy, localization and quantification of damage, and cost efficiency. Most existing research has focused on only one or two tasks, such as detection or detection and localization of damage. A preferred solution to detect, localize, quantify and compensate for environmental effects would be to integrate both data and model-based methods. This would provide quantified damage information to help engineers make appropriate maintenance decisions. These concerns are driving the development of a new system of integrated hybrid damage detection systems that can address the shortcomings of existing methods.
My research program is focused on the development of innovative hybrid approaches to structural damage detection systems that combine data- and model-based methods in order to leverage the inherent strengths of both. The data-based method uses probabilistic/non-probabilistic pattern classifiers or supervised and unsupervised machine learning approaches to classify damage-sensitive features such as natural frequencies and mode shapes as intact' or damaged'. The model-based method uses physics model of the target structure, typically applying a finite element method. By combining the two approaches and sharing measured data from sensors, a hybrid method can be obtained that will provide quantified damage information with early detection and localization in a cost-efficient manner as compared with traditional independent approaches. However, the high possibility of false alarms due to noises, sensor malfunctions and complex environmental effects means that engineers would still have to make on-site visits to confirm that damage has occurred. To address this challenge, a novel computer-vision-based damage detection method will be developed using low resolution cameras (similar to those used in smartphones), advanced image processing techniques and machine learning methods used in the data-based approach to classify images as intact' or damaged'. This damage detection method will ultimately be combined with the new hybrid system. The new hybrid damage detection system with computer vision will supply information that is reliable, accurate and cost-efficient by providing an explicit visual record of structural damage and optimally sharing measured sensor data.
工程研究界迫切需要一个可靠、高效、鲁棒的结构健康监测系统来支持桥梁等老化结构的监测。已经开发了许多不同的基于振动的方法来检测基础设施中的损坏,这些方法大致分为基于数据和基于模型的方法。然而,损伤检测方法,可以占这样的问题的复杂性,如环境温度的变化和跨桥梁的温度分布不均匀,仍然需要开发。就准确性、损害的定位和量化以及成本效益而言,没有最好的方法。大多数现有的研究只集中在一个或两个任务,如检测或检测和定位的损害。检测、定位、量化和补偿环境影响的一个首选解决方案是将基于数据和模型的方法结合起来。这将提供量化的损坏信息,以帮助工程师做出适当的维护决策。这些问题正在推动一个新的系统的集成混合损伤检测系统,可以解决现有方法的缺点的发展。
我的研究项目主要集中在开发创新的混合方法,结构损伤检测系统,联合收割机结合数据和基于模型的方法,以利用两者的固有优势。基于数据的方法使用概率/非概率模式分类器或有监督和无监督机器学习方法来将损伤敏感特征(诸如自然频率和模态形状)分类为完好的或受损的。基于模型的方法使用目标结构的物理模型,通常应用有限元方法。通过将这两种方法相结合并共享来自传感器的测量数据,可以获得一种混合方法,与传统的独立方法相比,该方法将以具有成本效益的方式提供量化的损伤信息以及早期检测和定位。然而,由于噪音、传感器故障和复杂的环境影响,误报的可能性很高,这意味着工程师仍需进行现场访问,以确认是否发生了损坏。为了应对这一挑战,将开发一种新的基于计算机视觉的损坏检测方法,使用低分辨率相机(类似于智能手机中使用的相机),先进的图像处理技术和基于数据的方法中使用的机器学习方法,将图像分类为“完整”或“损坏”。这种损伤检测方法最终将与新的混合动力系统相结合。新的计算机视觉混合损伤检测系统将通过提供结构损伤的明确视觉记录和最佳共享测量的传感器数据来提供可靠,准确和具有成本效益的信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cha, YoungJin其他文献
Cha, YoungJin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cha, YoungJin', 18)}}的其他基金
Deep learning based structural health monitoring with autonomous UAVs
基于深度学习的自主无人机结构健康监测
- 批准号:
RGPIN-2022-04120 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Developing an Advanced Hybrid System of Structural Health Monitoring
开发先进的结构健康监测混合系统
- 批准号:
RGPIN-2016-05923 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Developing an Advanced Hybrid System of Structural Health Monitoring
开发先进的结构健康监测混合系统
- 批准号:
RGPIN-2016-05923 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Deep learning-based active noise control for airplane cockpit
基于深度学习的飞机驾驶舱主动噪声控制
- 批准号:
533690-2018 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
Developing an Advanced Hybrid System of Structural Health Monitoring
开发先进的结构健康监测混合系统
- 批准号:
RGPIN-2016-05923 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Autonomous train wheel damage detection using advanced deep learning
使用先进的深度学习进行自主火车车轮损坏检测
- 批准号:
515025-2017 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
Developing an Advanced Hybrid System of Structural Health Monitoring
开发先进的结构健康监测混合系统
- 批准号:
RGPIN-2016-05923 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Unsupervised machine learning method for structural damage assessement
用于结构损伤评估的无监督机器学习方法
- 批准号:
500937-2016 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
Developing an Advanced Hybrid System of Structural Health Monitoring
开发先进的结构健康监测混合系统
- 批准号:
RGPIN-2016-05923 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
- 批准号:61201232
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
LTE-Advanced中继网络关键技术研究
- 批准号:61171096
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
IMT-Advanced协作中继网络中的网络编码研究
- 批准号:61040005
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
面向IMT-Advanced的移动组播关键技术研究
- 批准号:61001071
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
- 批准号:61001116
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Hybrid Thermal Probe and Laser for Direct Writing of Advanced Nano Sensors (HyProLaSens)
用于直接写入高级纳米传感器的混合热探针和激光 (HyProLaSens)
- 批准号:
531412015 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Major Research Instrumentation
A hybrid Deep Learning-assisted Finite Element technique to predict dynamic failure evolution in advanced ceramics (DeLFE)
用于预测先进陶瓷动态失效演化的混合深度学习辅助有限元技术 (DeLFE)
- 批准号:
EP/Y004671/1 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Research Grant
Enabling Sulfur-Based Beyond-Lithium Metal Batteries via a Mechanistic Understanding of Advanced Hybrid Cathodes and Borate Electrolytes
通过对先进混合阴极和硼酸盐电解质的机理理解,实现硫基超锂金属电池
- 批准号:
2323065 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Energy Storage Roll Fabrication Based on Flexible Hybrid Electronics and Advanced Microelectronics Packaging
基于柔性混合电子和先进微电子封装的储能卷制造
- 批准号:
23KK0071 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Hybrid digital twins: Incorporating AI to advanced monitoring and optimization of energy recovery systems
混合数字孪生:将人工智能融入能量回收系统的高级监控和优化
- 批准号:
2894768 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Studentship
Accelerating Gene Therapy and Editing with Advanced MS-Based Data Analysis for Nonstandard and Hybrid Nucleotide Sequences
通过基于 MS 的高级数据分析加速非标准和混合核苷酸序列的基因治疗和编辑
- 批准号:
10699241 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
A Hybrid Type 1 Effectiveness-Implementation Study of Education Strategies for Vascular Access Creation in Advanced Kidney Disease
晚期肾病血管通路创建教育策略的混合 1 型有效性实施研究
- 批准号:
10583058 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Hybrid optical vortices pioneers advanced helical materials
混合光学涡旋开创了先进螺旋材料
- 批准号:
23H00270 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Advanced Hybrid SFA/EMTP Simulator for Seamless Integration of Power Systems Dynamics and EMT Transients
先进的混合 SFA/EMTP 模拟器,可无缝集成电力系统动力学和 EMT 瞬态
- 批准号:
RGPIN-2020-04976 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
STTR Phase I: Development of an Additively-Manufactured, Non-Toxic, Advanced Storable Hybrid Rocket Propulsion System
STTR 第一阶段:开发增材制造、无毒、先进的可储存混合火箭推进系统
- 批准号:
2127098 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant