Attention Tracking using Shared Attention Modeling and Attentional Push
使用共享注意力建模和注意力推送进行注意力跟踪
基本信息
- 批准号:RGPIN-2015-06094
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our research program is concerned with attention tracking - determining where, and to what, people are paying attention. In particular, we are interested in measuring and predicting the visual attention of people viewing static photographs, computer displays, but also while watching videos or cinematic movies. Existing attention tracking methods based on eye tracking work well, but can be improved. One area of improvement was examined in recent work by our research group which concerned the inference of viewer task and its relation to the allocation of attention. Knowing what task a viewer is doing, such as reading, counting, or searching, is crucial to fine-tuning the notion of what is salient for that viewer. However, even this is not enough - a single randomly selected human will still do a better job of predicting where another human will look than even the best current attention tracking algorithms. One of the shortcomings of the current approaches is that, for the most part, they concentrate on analyzing regions of the image for their power to attract attention. The research program being proposed goes beyond these approaches and instead of only computing the power of an image region to 'pull' attention to it, we also consider the strength with which other regions of the image 'push' attention to the region in question. Objects or features in the image are analyzed as active manipulators of the viewers' attention. For example, man-made arrows on signs purposefully direct the viewer where to look, while converging lines in photographs can draw the viewers' attention to the intended subject in the image. Faces in images are known to be particularly effective in directing viewers attention in the direction of the face's gaze. We use the term 'Attentional Push' to refer to the power of image regions to direct and manipulate the attention allocation of the viewer. Our research will develop techniques for computing Attentional Push, which can then be integrated with standard image salience-based attention modeling algorithms to improve the ability to predict where viewers will fixate. In developing our techniques for computing Attentional Push, we will use knowledge gained from studies of 'Shared Attention' in humans and robots. Shared Attention is the process by which multiple 'actors' come to focus their attention on the same things. Our approach to Shared Attention is to identify the actors in the image, which can then be analyzed for their Attentional Push, potentially directing and manipulating the attention allocation of the viewer. The proposed work has many practical applications beyond understanding the attention of image viewers. We can use the methods developed to determine the collective focus of shared attention in surveillance of areas where many people gather, which could be used to analyze videos of group activities, such as sporting events, and predict the attention of viewers of these videos.
我们的研究项目关注的是注意力追踪--确定人们的注意力集中在哪里和什么地方。特别是,我们对测量和预测人们在观看静态照片、计算机显示器以及观看视频或电影时的视觉注意力感兴趣。现有的基于眼动跟踪的注意力跟踪方法工作得很好,但可以改进。我们的研究小组在最近的工作中研究了一个改进的领域,该领域涉及观众任务的推理及其与注意力分配的关系。了解观众正在做什么任务,如阅读、计数或搜索,对于微调观众的突出概念至关重要。然而,即使这是不够的-一个随机选择的人仍然会做一个更好的工作,预测另一个人会看,甚至比目前最好的注意力跟踪算法。当前方法的缺点之一是,在大多数情况下,它们集中于分析图像的区域以获得吸引注意力的能力。正在提出的研究计划超越了这些方法,而不是只计算图像区域的“拉”注意力的力量,我们还考虑了图像的其他区域的“推”注意力到该区域的问题。图像中的对象或特征被分析为观看者注意力的主动操纵器。例如,标志上的人造箭头有目的地引导观众看哪里,而照片中的会聚线可以将观众的注意力吸引到图像中的预期主题。已知图像中的面部在将观看者的注意力引导到面部注视的方向上方面特别有效。我们使用术语“注意力推动”来指图像区域的力量,以指导和操纵观众的注意力分配。我们的研究将开发计算注意力推送的技术,然后将其与标准的基于图像显着性的注意力建模算法相结合,以提高预测观众将注视的能力。在开发计算注意力推动的技术时,我们将使用从人类和机器人的“共享注意力”研究中获得的知识。共享注意力是多个“演员”将注意力集中在同一事物上的过程。我们的共享注意力方法是识别图像中的演员,然后可以分析他们的注意力推动,潜在地指导和操纵观众的注意力分配。所提出的工作有许多实际应用超出理解图像观众的注意。我们可以使用开发的方法来确定在许多人聚集的区域的监视中共享注意力的集体焦点,这可以用于分析群体活动的视频,例如体育赛事,并预测这些视频的观众的注意力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clark, James其他文献
A population-scale temporal case-control evaluation of COVID-19 disease phenotype and related outcome rates in patients with cancer in England (UKCCP).
- DOI:
10.1038/s41598-023-36990-9 - 发表时间:
2023-07-25 - 期刊:
- 影响因子:4.6
- 作者:
Starkey, Thomas;Ionescu, Maria;Tilby, Michael;Little, Martin W.;Burke, Emma;Fittall, Matthew;Khan, Sam R.;Liu, Justin K. H.;Platt, James R.;Mew, Rosie;Tripathy, Arvind;Watts, Isabella;Williams, Sophie Therese;Appanna, Nathan;Al-Hajji, Youssra;Barnard, Matthew;Benny, Liza;Burnett, Alexander L.;Bytyci, Jola;Cattell, Emma J.;Cheng, Vinton;Clark, James;Eastlake, Leonie;Gerrand, Kate;Ghafoor, Qamar;Grumett, Simon;Harper-Wynne, Catherine;Kahn, Rachel;Lee, Alvin J. X.;Lomas, Oliver;Lydon, Anna;Mckenzie, Hayley;Kinloch, Emma;Lam, Emily;Murphy, Gillian;Rhodes, Malcolm;Robinson, Kate;Panneerselvam, Hari S.;Pascoe, Jennifer;Patel, Grisma;Patel, Vijay A.;Potter, Vanessa;Randle, Amelia S.;Rigg, Anne M.;Robinson, Tim;Roylance, Rebecca W.;Roques, Tom;Rozmanowski, Stefan;Roux, Rene L.;Shah, Ketan;Sheehan, Remarez;Sintler, Martin;Swarup, Sanskriti;Taylor, Harriet;Tillett, Tania;Tuthill, Mark;Williams, Sarah;Ying, Yuxin;Beggs, Andrew;Iveson, Tim;Lee, Siow Ming;Middleton, Gary;Middleton, Mark;Protheroe, Andrew;Fowler, Tom;Johnson, Peter;Lee, Lennard Y. W.;NCRI Consumer Forum - 通讯作者:
NCRI Consumer Forum
Mechanism and consequence of the autoactivation of p38α mitogen-activated protein kinase promoted by TAB1.
- DOI:
10.1038/nsmb.2668 - 发表时间:
2013-10 - 期刊:
- 影响因子:16.8
- 作者:
De Nicola, Gian Felice;Martin, Eva Denise;Chaikuad, Apirat;Bassi, Rekha;Clark, James;Martino, Luigi;Verma, Sharwari;Sicard, Pierre;Tata, Renee;Atkinson, R. Andrew;Knapp, Stefan;Conte, Maria R.;Marber, Michael S. - 通讯作者:
Marber, Michael S.
The Natural Orifice Simulated Surgical Environment (NOSsEâ„¢): Exploring the Challenges of NOTES Without the Animal Model
- DOI:
10.1089/lap.2008.0357 - 发表时间:
2009-04-01 - 期刊:
- 影响因子:1.3
- 作者:
Clark, James;Sodergren, Mikael;Yang, Guang-Zhong - 通讯作者:
Yang, Guang-Zhong
Lymphoid blast crisis after prolonged treatment-free remission in chronic myeloid leukaemia after tyrosine kinase inhibitor de-escalation during the COVID-19 pandemic.
- DOI:
10.1002/jha2.302 - 发表时间:
2022-03 - 期刊:
- 影响因子:0
- 作者:
Avenoso, Daniele;Milojkovic, Dragana;Clark, James;Pocock, Christopher;Potter, Victoria;Yallop, Deborah;Hannah, Guy - 通讯作者:
Hannah, Guy
Complete Genome Sequence of Vibrio natriegens Phage Phriendly
- DOI:
10.1128/mra.01096-19 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:0.8
- 作者:
Clark, James;Awah, Adey;Ramsey, Jolene - 通讯作者:
Ramsey, Jolene
Clark, James的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clark, James', 18)}}的其他基金
Personalized Dynamic Attention Tracking
个性化动态注意力跟踪
- 批准号:
RGPIN-2020-04699 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Task-, viewer- and degradation-specific image quality assessment
特定于任务、查看器和退化的图像质量评估
- 批准号:
561074-2020 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Alliance Grants
Personalized Dynamic Attention Tracking
个性化动态注意力跟踪
- 批准号:
RGPIN-2020-04699 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Personalized Dynamic Attention Tracking
个性化动态注意力跟踪
- 批准号:
RGPIN-2020-04699 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Task-, viewer- and degradation-specific image quality assessment
特定于任务、查看器和退化的图像质量评估
- 批准号:
561074-2020 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Alliance Grants
Attention Tracking using Shared Attention Modeling and Attentional Push
使用共享注意力建模和注意力推送进行注意力跟踪
- 批准号:
RGPIN-2015-06094 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Surround 3D video content creation with moving cameras
使用移动摄像机创建环绕 3D 视频内容
- 批准号:
501466-2016 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Collaborative Research and Development Grants
Surround 3D video content creation with moving cameras
使用移动摄像机创建环绕 3D 视频内容
- 批准号:
501466-2016 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Collaborative Research and Development Grants
Attention Tracking using Shared Attention Modeling and Attentional Push
使用共享注意力建模和注意力推送进行注意力跟踪
- 批准号:
RGPIN-2015-06094 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Deep Learning for analyzing traffic camera video
用于分析交通摄像头视频的深度学习
- 批准号:
514086-2017 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Engage Grants Program
相似国自然基金
基于非结构化网格Front Tracking方法的复杂流动区域弹性界面液滴动力学研究
- 批准号:52006188
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
面向矿区地表大形变的PSI/DInSAR与Offset-tracking深度融合方法研究
- 批准号:51804297
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
非规则网格的front tracking 方法研究与程序实现
- 批准号:11176015
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:联合基金项目
多流体ALE模式下Front tracking 界面追踪法研究
- 批准号:10901022
- 批准年份:2009
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Understanding the Relationship of Covert and Overt Attention Using Concurrent EEG and Eye Tracking
职业:使用并发脑电图和眼动追踪了解隐性注意力和显性注意力的关系
- 批准号:
2345898 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Continuing Grant
Collaborative Research: HCC: Medium: HCI in Motion -- Using EEG, Eye Tracking, and Body Sensing for Attention-Aware Mobile Mixed Reality
合作研究:HCC:媒介:运动中的 HCI——使用 EEG、眼动追踪和身体感应实现注意力感知移动混合现实
- 批准号:
2211785 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Medium: HCI in Motion -- Using EEG, Eye Tracking, and Body Sensing for Attention-Aware Mobile Mixed Reality
合作研究:HCC:媒介:运动中的 HCI——使用 EEG、眼动追踪和身体感应实现注意力感知移动混合现实
- 批准号:
2211784 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
CAREER: Understanding the Relationship of Covert and Overt Attention Using Concurrent EEG and Eye Tracking
职业:使用并发脑电图和眼动追踪了解隐性注意力和显性注意力的关系
- 批准号:
2045624 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Continuing Grant
Examining naturalistic social engagement: Using mobile eye-tracking to investigate individual differences and within-person variation in adolescent behavior, attention, and neural processing
检查自然主义的社会参与:使用移动眼动追踪来研究青少年行为、注意力和神经处理的个体差异和人内差异
- 批准号:
10115522 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Examining naturalistic social engagement: Using mobile eye-tracking to investigate individual differences and within-person variation in adolescent behavior, attention, and neural processing
检查自然主义的社会参与:使用移动眼动追踪来研究青少年行为、注意力和神经处理的个体差异和人内差异
- 批准号:
10321277 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Examining naturalistic social engagement: Using mobile eye-tracking to investigate individual differences and within-person variation in adolescent behavior, attention, and neural processing
检查自然主义的社会参与:使用移动眼动追踪来研究青少年行为、注意力和神经处理的个体差异和人内差异
- 批准号:
9911085 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Attention Tracking using Shared Attention Modeling and Attentional Push
使用共享注意力建模和注意力推送进行注意力跟踪
- 批准号:
RGPIN-2015-06094 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Using eye-tracking and computational modeling to understanding the dynamic allocation of attention during category learning
使用眼动追踪和计算模型来理解类别学习期间注意力的动态分配
- 批准号:
327301-2013 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Attention Tracking using Shared Attention Modeling and Attentional Push
使用共享注意力建模和注意力推送进行注意力跟踪
- 批准号:
RGPIN-2015-06094 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual