Statistical Approaches to Analyzing Breath Sample Data in order to Determine Disease Status

分析呼吸样本数据以确定疾病状态的统计方法

基本信息

  • 批准号:
    521171-2018
  • 负责人:
  • 金额:
    $ 0.72万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Plus Grants Program
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Picomole Inc. has developed a non-invasive breath analysis device that can detect pulmonary diseases by**identifying chemical compounds in the breath. We will demonstrate that this device has a sensitivity and**specificity that can so far only be obtained with more invasive surgeries. It is based on absorption**measurements of compounds in the mid-infrared (mid-IR) region obtained using Continuous Wave Cavity**Ring-Down Spectroscopy (CW-CRDS).**We will develop Functional Data Analysis (FDA) techniques for breath sample data that will distinguish**healthy subjects from those with pulmonary disease (e.g. lung cancer). FDA is ideally suited to data that can be**represented as functions or curves (e.g. spectroscopy data). Functional Linear Discriminant Analysis (FLDA) is**an extension of a classical statistical**classification technique (Linear Discriminant Analysis) and can deal with problems unique to functional**datasets. When applied to fabricated breath sample data made available by Picomole, FLDA perfectly**distinguished between subjects with lung cancer and those without. Another classification technique that we**will explore is DDG plot (Depth vs. Depth plots for**G groups) classifiers. DDG plot classifiers apply any statistical classification method to measures of data depth.**Data depth measures quantify how "deep" an observation is in relation to its underlying distribution. DDG plot**classifiers have been applied to other spectrometry datasets with good results and show promise here. Our**methods will be readily extendible to the classification of other disease statuses of interest.**Dalhousie researchers will make monthly visits to Picomole's facilities in Moncton to critically appraise**ongoing data collection and processing methods as well as to communicate modelling results. Picomole will
Picomole公司开发了一种无创呼吸分析设备,可以通过识别呼吸中的化合物来检测肺部疾病。我们将证明该装置具有灵敏度和特异性,迄今为止只能通过更具侵入性的手术获得。它是基于使用连续波腔衰荡光谱(CW-CRDS)获得的中红外(mid-IR)区域化合物的吸收测量。**我们将开发呼气样本数据的功能数据分析(FDA)技术,以区分健康受试者和肺部疾病患者(如肺癌)。FDA非常适合可以**表示为函数或曲线的数据(例如光谱数据)。功能线性判别分析(FLDA)是经典统计分类技术(线性判别分析)的扩展,可以处理功能数据集特有的问题。当应用于Picomole提供的合成呼吸样本数据时,FLDA完美地区分了肺癌患者和非肺癌患者。我们将探索的另一种分类技术是DDG图(**G组的深度vs深度图)分类器。DDG图分类器应用任何统计分类方法来测量数据深度。**数据深度测量量化观测值相对于其底层分布的“深度”。DDG图**分类器已应用于其他光谱数据集,效果良好,在这里显示出希望。我们的方法将很容易扩展到其他感兴趣的疾病状态的分类。达尔豪斯的研究人员将每月访问Picomole在蒙克顿的设施,以严格评估正在进行的数据收集和处理方法,并传达建模结果。皮摩尔将

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Flemming, Joanna其他文献

Flemming, Joanna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Flemming, Joanna', 18)}}的其他基金

Statistical Methods and Computational Tools for Marine Animal Movement, Distribution and Population Size
海洋动物运动、分布和种群规模的统计方法和计算工具
  • 批准号:
    RGPIN-2019-05688
  • 财政年份:
    2022
  • 资助金额:
    $ 0.72万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods and Computational Tools for Marine Animal Movement, Distribution and Population Size
海洋动物运动、分布和种群规模的统计方法和计算工具
  • 批准号:
    RGPIN-2019-05688
  • 财政年份:
    2021
  • 资助金额:
    $ 0.72万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods and Computational Tools for Marine Animal Movement, Distribution and Population Size
海洋动物运动、分布和种群规模的统计方法和计算工具
  • 批准号:
    RGPAS-2019-00092
  • 财政年份:
    2020
  • 资助金额:
    $ 0.72万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Statistical Methods and Computational Tools for Marine Animal Movement, Distribution and Population Size
海洋动物运动、分布和种群规模的统计方法和计算工具
  • 批准号:
    RGPIN-2019-05688
  • 财政年份:
    2020
  • 资助金额:
    $ 0.72万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods and Computational Tools for Marine Animal Movement, Distribution and Population Size
海洋动物运动、分布和种群规模的统计方法和计算工具
  • 批准号:
    RGPAS-2019-00092
  • 财政年份:
    2019
  • 资助金额:
    $ 0.72万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Statistical Methods and Computational Tools for Marine Animal Movement, Distribution and Population Size
海洋动物运动、分布和种群规模的统计方法和计算工具
  • 批准号:
    RGPIN-2019-05688
  • 财政年份:
    2019
  • 资助金额:
    $ 0.72万
  • 项目类别:
    Discovery Grants Program - Individual
The development of statistical methodology and computational techniques for the modelling of complex ecological data
用于复杂生态数据建模的统计方法和计算技术的发展
  • 批准号:
    298405-2011
  • 财政年份:
    2018
  • 资助金额:
    $ 0.72万
  • 项目类别:
    Discovery Grants Program - Individual
The development of statistical methodology and computational techniques for the modelling of complex ecological data
用于复杂生态数据建模的统计方法和计算技术的发展
  • 批准号:
    298405-2011
  • 财政年份:
    2017
  • 资助金额:
    $ 0.72万
  • 项目类别:
    Discovery Grants Program - Individual
The development of statistical methodology and computational techniques for the modelling of complex ecological data
用于复杂生态数据建模的统计方法和计算技术的发展
  • 批准号:
    298405-2011
  • 财政年份:
    2016
  • 资助金额:
    $ 0.72万
  • 项目类别:
    Discovery Grants Program - Individual
Application of Statistical Methods to Analyze a Simulated Breath Sample Dataset to Determine Disease Status
应用统计方法分析模拟呼吸样本数据集以确定疾病状态
  • 批准号:
    505968-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 0.72万
  • 项目类别:
    Engage Grants Program

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Computational Approaches for Organizing and Analyzing High Dimensional microRNA Data
组织和分析高维 microRNA 数据的计算方法
  • 批准号:
    486371
  • 财政年份:
    2022
  • 资助金额:
    $ 0.72万
  • 项目类别:
    Studentship Programs
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2020-07157
  • 财政年份:
    2022
  • 资助金额:
    $ 0.72万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methods for analyzing messy microbiome data: detection of hidden artifacts and robust modeling approaches
分析杂乱微生物组数据的统计方法:隐藏伪影的检测和稳健的建模方法
  • 批准号:
    10708908
  • 财政年份:
    2022
  • 资助金额:
    $ 0.72万
  • 项目类别:
Statistical methods for analyzing messy microbiome data: detection of hidden artifacts and robust modeling approaches
分析杂乱微生物组数据的统计方法:隐藏伪影的检测和稳健的建模方法
  • 批准号:
    10503637
  • 财政年份:
    2022
  • 资助金额:
    $ 0.72万
  • 项目类别:
Re-imagining long-term care: Analyzing the health, well-being and employment of care workers using linked data and intersectional approaches
重新构想长期护理:使用关联数据和交叉方法分析护理人员的健康、福祉和就业
  • 批准号:
    465766
  • 财政年份:
    2022
  • 资助金额:
    $ 0.72万
  • 项目类别:
    Fellowship Programs
CAREER: Statistical approaches and computational tools for analyzing spatially-resolved single-cell transcriptomics data
职业:用于分析空间分辨单细胞转录组数据的统计方法和计算工具
  • 批准号:
    2047611
  • 财政年份:
    2021
  • 资助金额:
    $ 0.72万
  • 项目类别:
    Continuing Grant
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2020-07157
  • 财政年份:
    2021
  • 资助金额:
    $ 0.72万
  • 项目类别:
    Discovery Grants Program - Individual
Development of novel diagnostic and therapeutic approaches to cancer by analyzing specific features of the immunoglobulin superfamily of molecules.
通过分析免疫球蛋白分子超家族的具体特征,开发新的癌症诊断和治疗方法。
  • 批准号:
    20H03525
  • 财政年份:
    2020
  • 资助金额:
    $ 0.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2020-07157
  • 财政年份:
    2020
  • 资助金额:
    $ 0.72万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Deep Learning Approaches for Analyzing Diffusion Imaging Data
用于分析扩散成像数据的新型深度学习方法
  • 批准号:
    417063796
  • 财政年份:
    2019
  • 资助金额:
    $ 0.72万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了