Novel Deep Learning Approaches for Analyzing Diffusion Imaging Data

用于分析扩散成像数据的新型深度学习方法

基本信息

项目摘要

Recently, diffusion imaging (DI) rapidly developed into one of the most important non-invasive tools for clinical brain research. However, long measurement times, due to the required number of acquired gradient directions, result in a rare usage of DI in clinical practice. To overcome this problem, recent methods demonstrated the strength of machine learning and in particular deep learning (DL), which is able to describe and reconstruct the tissue's underlying complex functions very accurately while only few gradient directions are required. Thus, scanning time can be greatly reduced.For an optimal applicability of DL in clinical DI, however, four major obstacles were identified which will be addressed within this project. The biggest barrier is the large variance between data from different MRI systems. To overcome this barrier, existing methods for harmonizing different MRI systems will be compared and an optimal method for harmonizing MRI signals will be developed.Next, the need of ground truth data is addressed, which is difficult to obtain in DI, complicating the training of DL methods. To solve this problem, a framework will be developed that reads in a dataset, to determine important diffusion characteristics and statistics. Subsequently, individual diffusion data and thereby a complete diffusion dataset can be synthesized based on this information. The resulting data and its corresponding ground truth can later be used during training to improve the DL model’s performance.Furthermore, complex signals, which are commonly discarded during acquisition, due to their rare usage in regular reconstruction methods, are integrated into the reconstruction utilizing novel DL methods. Studies have shown that complex MRI signals carry important tissue information, which could therefore be used as additional information during reconstruction within DL networks. For this purpose, new DL components that are capable of processing complex signals need to be developed. At the end of this project, the focus lies on the angle-related diffusion signals per voxel. Previous DL methods are currently not able to incorporate this additional spherical information into the processing, which is why new methods are needed that transfer the previous DL elements onto a sphere and link them to normal DL elements. In this way, neighboring information within the signal as well as between signals can be included to ensure optimal reconstruction.Throughout the first half of the project, MRI data, including its phase data, a high number of gradient directions and a high resolution will be acquired at various locations to evaluate all the methods described. The aim of this project and the resulting methods is to significantly reduce the scan times for diffusion imaging sequences in clinical practice while maintaining the same accuracy.
近年来,弥散成像(diffusion imaging,DI)迅速发展成为临床脑研究的重要非侵入性工具之一。然而,由于所需的梯度方向数量,测量时间较长,导致临床实践中很少使用DI。为了克服这个问题,最近的方法证明了机器学习的力量,特别是深度学习(DL),它能够非常准确地描述和重建组织的底层复杂功能,而只需要很少的梯度方向。因此,扫描时间可以大大减少。然而,对于DL在临床DI中的最佳适用性,确定了四个主要障碍,这些障碍将在本项目中得到解决。最大的障碍是来自不同MRI系统的数据之间的巨大差异。为了克服这一障碍,现有的方法协调不同的MRI系统将进行比较,并协调MRI信号的最佳方法将developed.Next,地面真实数据的需要,这是很难获得的DI,复杂的DL方法的训练。为了解决这个问题,将开发一个框架来读取数据集,以确定重要的扩散特征和统计数据。随后,可以基于该信息来合成各个扩散数据并且由此合成完整的扩散数据集。在训练过程中,可以使用得到的数据及其对应的地面真值来提高DL模型的性能。此外,由于在常规重建方法中很少使用,通常在采集过程中被丢弃的复信号被集成到使用新型DL方法的重建中。研究表明,复杂的MRI信号携带重要的组织信息,因此可以在DL网络内的重建期间用作附加信息。为此,需要开发能够处理复杂信号的新DL组件。在这个项目的最后,重点在于每个体素的角度相关的扩散信号。先前的DL方法当前不能将该附加的球面信息并入到处理中,这就是为什么需要将先前的DL元素转移到球面上并将它们链接到正常DL元素的新方法的原因。在整个项目的前半部分,将在各个位置采集MRI数据,包括其相位数据,大量的梯度方向和高分辨率,以评估所描述的所有方法。该项目的目的和由此产生的方法是显着减少在临床实践中的扩散成像序列的扫描时间,同时保持相同的精度。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr.-Ing. Dorit Merhof其他文献

Professorin Dr.-Ing. Dorit Merhof的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr.-Ing. Dorit Merhof', 18)}}的其他基金

Automated measurement of stress scores in video recordings of laboratory animals
自动测量实验动物视频记录中的压力分数
  • 批准号:
    441567598
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Units
Automated measurement of stress scores in video recordings of laboratory mice
自动测量实验室小鼠视频记录中的压力评分
  • 批准号:
    408132301
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
The larval 4D standard brain of Drosophila melanogaster on a single cell level
单细胞水平的黑腹果蝇幼虫4D标准大脑
  • 批准号:
    266382180
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
ACTIVE - Aachen Center for Biomedical Image Analysis, Visualization and Exploration
ACTIVE - 亚琛生物医学图像分析、可视化和探索中心
  • 批准号:
    233509121
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Core Facilities
Larvalbrain2.0: A research platform for the larval brain of Drosophila melanogaster
Larvalbrain2.0:黑腹果蝇幼虫大脑研究平台
  • 批准号:
    441181781
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
More from less: Overcoming Data Scarcity for Deep Learning in Medical Image Computing
少而多:克服医学图像计算中深度学习的数据稀缺性
  • 批准号:
    455548460
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于Deep Unrolling的高分辨近红外二区荧光分子断层成像方法研究
  • 批准号:
    12271434
  • 批准年份:
    2022
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
基于深度森林(Deep Forest)模型的表面增强拉曼光谱分析方法研究
  • 批准号:
    2020A151501709
  • 批准年份:
    2020
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
面向Deep Web的数据整合关键技术研究
  • 批准号:
    61872168
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于语义计算的海量Deep Web知识探索机制研究
  • 批准号:
    61272411
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
Deep Web数据集成查询结果抽取与整合关键技术研究
  • 批准号:
    61100167
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
面向Deep Web的大规模知识库自动构建方法研究
  • 批准号:
    61170020
  • 批准年份:
    2011
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Deep Web敏感聚合信息保护方法研究
  • 批准号:
    61003054
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于逻辑强化学习的Deep Web模式匹配研究
  • 批准号:
    61070122
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Toward next-generation flexible and interpretable deep learning: A novel evolutionary wide dendritic learning
迈向下一代灵活且可解释的深度学习:一种新颖的进化广泛的树突学习
  • 批准号:
    23K24899
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Application of deep learning and novel survival models to predict MCI-to-AD dementia progression
应用深度学习和新型生存模型预测 MCI 至 AD 痴呆的进展
  • 批准号:
    10725359
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A novel Deep Learning method for estimating Cortical Thickness trajectories in Alzheimer's patients and healthy population
一种新的深度学习方法,用于估计阿尔茨海默病患者和健康人群的皮质厚度轨迹
  • 批准号:
    2886734
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Learn, transfer, generate: Developing novel deep learning models for enhancing robustness and accuracy of small-scale single-cell RNA sequencing studies
学习、转移、生成:开发新颖的深度学习模型,以增强小规模单细胞 RNA 测序研究的稳健性和准确性
  • 批准号:
    10535708
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Japan-U.S. collaboration to find novel biomarkers of CDK4/6 inhibitor using explainable deep learning and spatial genetic analysis.
日美合作利用可解释的深度学习和空间遗传分析寻找 CDK4/6 抑制剂的新型生物标志物。
  • 批准号:
    22KK0118
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Development of novel approaches to improve water resources data records, deep learning based forecasting, and participatory socio-hydrological systems modeling for integrated and adaptive water resources management
开发新方法来改进水资源数据记录、基于深度学习的预测以及用于综合和适应性水资源管理的参与式社会水文系统建模
  • 批准号:
    RGPIN-2020-05325
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Novel Deep Learning Tools for Clinical Decision Support in Postoperative Pain Management
用于术后疼痛管理临床决策支持的新型深度学习工具
  • 批准号:
    10684876
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Developing Novel Deep Multitask Learning Algorithms for Various Industry Applications
为各种行业应用开发新颖的深度多任务学习算法
  • 批准号:
    575989-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Clinical Development and Validation of a Novel Optical Facebow based on Deep Learning
基于深度学习的新型光学面弓的临床开发和验证
  • 批准号:
    10036298
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
FAI: A novel paradigm for fairness-aware deep learning models on data streams
FAI:数据流上具有公平意识的深度学习模型的新颖范式
  • 批准号:
    2147375
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了