Reconstruction of Sparse Multi-dimensional Imaging Data for Time-efficient Imaging

稀疏多维成像数据重建以实现高效成像

基本信息

  • 批准号:
    261754-2013
  • 负责人:
  • 金额:
    $ 2.55万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Reconstruction of Sparse Multi-dimensional Imaging Data for Time-efficient Imaging****In a continuation of my current NSERC-funded research program, I plan to further investigate new techniques for the reconstruction of images from sparse data. My investigations will focus on a general class of recently formulated methods, known as compressed sensing approaches. These approaches share some properties with image compression commonly employed in digital cameras to make pictures smaller. In compressed sensing, we assume that our final images can be formed form a subset of the needed data. Compressed sensing describes the process at which the limited acquired data is "uncompressed" to form high quality images. The overarching objective of my program over the next five years is to explore the reconstruction of multi-dimensional data, by extending our work from sparse sampling only along two or three spatial dimensions, to multi-dimensional sampling including the three spatial dimensions plus time. In accomplishing this goal, we will also enhance methods for improving 1) image reconstruction approaches and 2) the objective assessment of image reconstructed from compressed data. NSERC support will provide foundational support for this program of fundamental image science research and will principally support trainees engaged by this program.******
稀疏多维成像数据的重建用于时间效率成像*在我目前由NSERC资助的研究计划的继续中,我计划进一步研究从稀疏数据重建图像的新技术。我的研究将集中在最近制定的一类方法上,即所谓的压缩传感方法。这些方法与数码相机中通常使用的图像压缩有一些共同的特性,以使照片更小。在压缩感知中,我们假设我们的最终图像可以由所需数据的子集形成。压缩感知描述了对有限的采集数据进行“解压缩”以形成高质量图像的过程。我的计划在未来五年的总体目标是探索多维数据的重建,将我们的工作从只沿两个或三个空间维度的稀疏抽样扩展到包括三个空间维度加时间的多维抽样。为了实现这一目标,我们还将改进方法,以改进1)图像重建方法和2)从压缩数据重建图像的客观评估。NSERC的支持将为该基础图像科学研究计划提供基础支持,并将主要支持该计划聘用的学员。*

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Frayne, Richard其他文献

Brain iron content in cerebral amyloid angiopathy using quantitative susceptibility mapping.
  • DOI:
    10.3389/fnins.2023.1139988
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Sharma, Breni;Beaudin, Andrew E.;Cox, Emily;Saad, Feryal;Nelles, Krista;Gee, Myrlene;Frayne, Richard;Gobbi, David G.;Camicioli, Richard;Smith, Eric E.;McCreary, Cheryl R.
  • 通讯作者:
    McCreary, Cheryl R.
Automatic identification of atherosclerosis subjects in a heterogeneous MR brain imaging data set
  • DOI:
    10.1016/j.mri.2019.06.007
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Bento, Mariana;Souza, Roberto;Frayne, Richard
  • 通讯作者:
    Frayne, Richard
Assessment of brain aneurysms by using high-resolution magnetic resonance angiography after endovascular coil delivery
  • DOI:
    10.3171/jns-07/08/0283
  • 发表时间:
    2007-08-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Wong, John H.;Mitha, Alim P.;Frayne, Richard
  • 通讯作者:
    Frayne, Richard
Calgary Normative Study: design of a prospective longitudinal study to characterise potential quantitative MR biomarkers of neurodegeneration over the adult lifespan
  • DOI:
    10.1136/bmjopen-2020-038120
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    McCreary, Cheryl R.;Salluzzi, Marina;Frayne, Richard
  • 通讯作者:
    Frayne, Richard
Deconvolution with simple extrapolation for improved cerebral blood flow measurement in dynamic susceptibility contrast magnetic resonance imaging during acute ischemic stroke
  • DOI:
    10.1016/j.mri.2011.02.024
  • 发表时间:
    2011-06-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    MacDonald, Matthew Ethan;Smith, Michael Richard;Frayne, Richard
  • 通讯作者:
    Frayne, Richard

Frayne, Richard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Frayne, Richard', 18)}}的其他基金

Advanced Deep Learning Approaches to Enhance Magnetic Resonance Tomography
增强磁共振断层扫描的先进深度学习方法
  • 批准号:
    RGPIN-2021-02858
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Deep Learning Approaches to Enhance Magnetic Resonance Tomography
增强磁共振断层扫描的先进深度学习方法
  • 批准号:
    RGPIN-2021-02858
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC CREATE International and industrial Imaging Training (I3T) Program
NSERC CREATE 国际和工业成像培训 (I3T) 计划
  • 批准号:
    413533-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Collaborative Research and Training Experience
NSERC CREATE International and industrial Imaging Training (I3T) Program
NSERC CREATE 国际和工业成像培训 (I3T) 计划
  • 批准号:
    413533-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Collaborative Research and Training Experience
Reconstruction of Sparse Multi-dimensional Imaging Data for Time-efficient Imaging
稀疏多维成像数据重建以实现高效成像
  • 批准号:
    261754-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Reconstruction of Sparse Multi-dimensional Imaging Data for Time-efficient Imaging
稀疏多维成像数据重建以实现高效成像
  • 批准号:
    261754-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC CREATE International and industrial Imaging Training (I3T) Program
NSERC CREATE 国际和工业成像培训 (I3T) 计划
  • 批准号:
    413533-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Collaborative Research and Training Experience
Reconstruction of Sparse Multi-dimensional Imaging Data for Time-efficient Imaging
稀疏多维成像数据重建以实现高效成像
  • 批准号:
    261754-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC CREATE International and industrial Imaging Training (I3T) Program
NSERC CREATE 国际和工业成像培训 (I3T) 计划
  • 批准号:
    413533-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Collaborative Research and Training Experience
Reconstruction of Sparse Multi-dimensional Imaging Data for Time-efficient Imaging
稀疏多维成像数据重建以实现高效成像
  • 批准号:
    261754-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于Sparse-Land模型的SAR图像噪声抑制与分割
  • 批准号:
    60971128
  • 批准年份:
    2009
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Fast Multi-dimensional Diffusion MRI with Sparse Sampling and Model-based Deep Learning Reconstruction
具有稀疏采样和基于模型的深度学习重建的快速多维扩散 MRI
  • 批准号:
    10428538
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
Fast Multi-dimensional Diffusion MRI with Sparse Sampling and Model-based Deep Learning Reconstruction
具有稀疏采样和基于模型的深度学习重建的快速多维扩散 MRI
  • 批准号:
    10183606
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
Pattern Extraction by Independent Component Analysis and Multi-layer Sparse Network
独立成分分析和多层稀疏网络的模式提取
  • 批准号:
    21K12036
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fast Multi-dimensional Diffusion MRI with Sparse Sampling and Model-based Deep Learning Reconstruction
具有稀疏采样和基于模型的深度学习重建的快速多维扩散 MRI
  • 批准号:
    10620716
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
Sparse optimization theory for formation control of multi-agent systems
多智能体系统编队控制的稀疏优化理论
  • 批准号:
    19K23519
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
A Penalized Sparse Model for Multi-Source Survival Analysis.
用于多源生存分析的惩罚稀疏模型。
  • 批准号:
    519554-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Surrogate-based active learning for parameter inference in geosciences via Bayesian sparse² multi-adaptivity enhanced by information theory
基于代理的主动学习,通过信息论增强的贝叶斯稀疏多元适应性进行地球科学参数推断
  • 批准号:
    432343452
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Research Grants
Inferring Personalized Multi-criteria Routing Models from Sparse Sets of Voluntarily Contributed Trajectories
从稀疏的自愿贡献轨迹集中推断个性化多标准路由模型
  • 批准号:
    424960421
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Priority Programmes
Tensor Sparse Coding for Temporal and Spatial Feature Extraction and Classification of Liver Lesions in Multi-phase CT Images
张量稀疏编码用于多时相 CT 图像中肝脏病变的时空特征提取和分类
  • 批准号:
    18H03267
  • 财政年份:
    2018
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
3D Shape Modeling from Sparse Multi-view Images
基于稀疏多视图图像的 3D 形状建模
  • 批准号:
    18K11352
  • 财政年份:
    2018
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了