Extracting RDoC Constructs from EHR through Natural Language Processing to Predict Suicide in Youth
通过自然语言处理从 EHR 中提取 RDoC 结构来预测青少年自杀
基本信息
- 批准号:10689244
- 负责人:
- 金额:$ 22.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdolescenceAdolescentAffectAgeAnhedoniaAnxiety DisordersArousalBlack raceCause of DeathChildhoodClassificationClinicalCollaborationsDataData AnalyticsData CollectionData SetDepressed moodDiagnosisDiagnosticElectronic Health RecordElementsEvaluation ResearchExhibitsFeeling suicidalFutureGenderGoalsHospitalsInterventionInvestmentsKnowledgeLanguageMachine LearningMeasuresMedical centerMental DepressionMental HealthModelingNatural Language ProcessingNegative ValenceOutcomePatientsPediatric HospitalsPerformancePhiladelphiaPositive ValencePsychiatryPublishingRaceRecording of previous eventsResearchResearch Domain CriteriaResourcesRisk EstimateRisk FactorsSeveritiesSiteSleepSleeplessnessSubgroupSuicideSuicide attemptSystemTestingTextTranslatingUniversitiesWakefulnessWorkYouthchild depressionclinical practicecognitive systemdeep learningdeep neural networkdemographicselectronic structureexperiencegender minorityimprovedinnovationlarge datasetsmachine learning predictionnovelrisk predictionsociodemographicsstatisticsstructured datasuicidal behaviorsuicidal risksuicide attemptersuicide modelsuicide ratetoolunstructured data
项目摘要
PROJECT SUMMARY/ABSTRACT
Suicide ranks as the second most frequent cause of death in adolescence, and the rate of
suicide among adolescents has continued to increase. Despite 50 years of research and efforts,
the prediction of suicide and suicidal thoughts and behaviors (STBs) remains difficult. Recent
studies indicate that electronic health record (EHR) data analytics can help predict the risk of
STB. The Research Domain Criteria (RDoC) provides a framework to probe transdiagnostic
domains reflecting the positive valence, the negative valence, and the sleep-wakefulness
element insomnia within the arousal and regulatory domain. These three RDoC constructs have
shown strong association with depression and anxiety disorders. However, there exists a
knowledge gap regarding the relationship and impact of RDoC measures extracted from EHR
on youth suicide attempts (SAs). Given significant changes in positive affect and cognitive
systems during childhood and adolescence, our overall goal is to assess the RDoC positive
valence, the negative valence, and the sleep-wakefulness element insomnia in youth with STBs
using machine learning and deep learning based natural language processing of EHR data.
This study will leverage the effort and resources that have been invested in previous projects
from two sites: a study on SA prediction using natural language processing and machine
learning from EHR data (n=7,670 youths) in the University of Pittsburgh Medical Center (UPMC)
hospitals; and the data collection for SA study in the Children’s Hospital of Philadelphia (CHOP)
with 567,091youths (n=3,125 attempters). The specific aims are to 1) develop and validate
extraction of summary variables from EHR using deep neural network language models for the
positive valence, the negative valence, and the sleep-wakefulness element insomnia within the
arousal and regulatory domain; 2) compare performance of the ML models developed in Aim 1
to extract the RDoC positive and negative valence and insomnia from EHR with traditional NLP
approaches; and 3) test utility of the RDoC positive and negative valence and insomnia in
prediction of suicidal behaviors. This proposed study, if successful, is the first steps towards
other RDoC domains and constructs extracted from EHR on youth SAs and translating the
obtained models to clinical settings. Dr. Tsui (CHOP) and Dr. Ryan (UPMC) have a long history
of collaboration in mental health studies using ML and NLP and have strong experience in
serving as PIs in various studies. Overall, our study has a potential to advance the field of SA
prediction that facilitates timely intervention and ultimately reduces youth suicides.
项目摘要/摘要
自杀是青春期第二大最常见的死亡原因,而
青少年自杀人数继续增加。尽管有50年的研究和努力,
自杀和自杀想法和行为(STB)的预测仍然很困难。近期
研究表明,电子健康记录(EHR)数据分析可以帮助预测
机顶盒。研究领域标准(RDoC)提供了调查跨诊断的框架
反映正价、负价和睡眠觉醒的区域
觉醒和调节领域内的元素失眠。这三个RDoC结构具有
显示出与抑郁症和焦虑症有很强的联系。然而,存在一种
关于从eHR中提取的RDoC措施的关系和影响的知识差距
关于青少年自杀未遂(SA)。考虑到积极情绪和认知能力的显著变化
在儿童和青少年时期,我们的总体目标是评估RDoC的积极作用
青年STBS患者失眠的价态、负价态和睡眠觉醒因子
使用基于机器学习和深度学习的自然语言处理电子病历数据。
这项研究将利用在以前的项目中投入的努力和资源
基于自然语言处理和机器的SA预测研究
从匹兹堡大学医学中心(UPMC)的EHR数据中学习(n=7670名青年)
医院;费城儿童医院(CHOP)SA研究的数据收集
有567,091名青年(n=3,125人)。具体目标是:1)开发和验证
使用深度神经网络语言模型从电子病历中提取汇总变量
正价、负价与睡眠-觉醒元素失眠
唤醒和调节领域;2)比较目标1中开发的ML模型的性能
用传统NLP从EHR中提取RDoC正负价和失眠
方法;3)RDoC正负效价和失眠的测试效用
对自杀行为的预测。这项拟议的研究如果成功,将是实现以下目标的第一步
从青年SA上的EHR中提取的其他RDoC域和结构,并将
将获得的模型应用于临床环境。徐博士(Chop)和瑞安博士(UPMC)有着悠久的历史
在使用ML和NLP进行心理健康研究方面的合作经验,并在
在各种研究中担任PI。总体而言,我们的研究具有推动SA领域发展的潜力
有助于及时干预并最终减少青少年自杀的预测。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NEAL D. RYAN其他文献
FESTSCHRIFT: JOAQUIM PUIG-ANTICH, M.D. (1944–1989)
- DOI:
10.1097/00004583-199207000-00002 - 发表时间:
1992-07-01 - 期刊:
- 影响因子:
- 作者:
BARBARA GELLER;NEAL D. RYAN - 通讯作者:
NEAL D. RYAN
NEAL D. RYAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NEAL D. RYAN', 18)}}的其他基金
Extracting RDoC Constructs from EHR through Natural Language Processing to Predict Suicide in Youth
通过自然语言处理从 EHR 中提取 RDoC 结构来预测青少年自杀
- 批准号:
10511775 - 财政年份:2022
- 资助金额:
$ 22.04万 - 项目类别:
Transdisciplinary Studies of CBT for Anxiety in Youth
CBT治疗青少年焦虑的跨学科研究
- 批准号:
7626463 - 财政年份:2008
- 资助金额:
$ 22.04万 - 项目类别:
Transdisciplinary Studies of CBT for Anxiety in Youth
CBT治疗青少年焦虑的跨学科研究
- 批准号:
8107516 - 财政年份:2008
- 资助金额:
$ 22.04万 - 项目类别:
Transdisciplinary Studies of CBT for Anxiety in Youth
CBT治疗青少年焦虑的跨学科研究
- 批准号:
7892282 - 财政年份:2008
- 资助金额:
$ 22.04万 - 项目类别:
Transdisciplinary Studies of CBT for Anxiety in Youth
CBT治疗青少年焦虑的跨学科研究
- 批准号:
7451576 - 财政年份:2008
- 资助金额:
$ 22.04万 - 项目类别:
Transdisciplinary Studies of CBT for Anxiety in Youth
CBT治疗青少年焦虑的跨学科研究
- 批准号:
8305062 - 财政年份:2008
- 资助金额:
$ 22.04万 - 项目类别:
Child Intervention Prevention and Services Summer Research Institute
儿童干预预防和服务夏季研究所
- 批准号:
7916385 - 财政年份:2004
- 资助金额:
$ 22.04万 - 项目类别:
Child Intervention, Prevention and Services Research Mentoring Network
儿童干预、预防和服务研究指导网络
- 批准号:
8931412 - 财政年份:2004
- 资助金额:
$ 22.04万 - 项目类别:
相似海外基金
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
- 批准号:
10823917 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Socio-Emotional Characteristics in Early Childhood and Offending Behaviour in Adolescence
幼儿期的社会情感特征和青春期的犯罪行为
- 批准号:
ES/Z502601/1 - 财政年份:2024
- 资助金额:
$ 22.04万 - 项目类别:
Fellowship
Reasoning about Spatial Relations and Distributions: Supporting STEM Learning in Early Adolescence
空间关系和分布的推理:支持青春期早期的 STEM 学习
- 批准号:
2300937 - 财政年份:2023
- 资助金额:
$ 22.04万 - 项目类别:
Continuing Grant
Cognitive and non-cognitive abilities and career development during adolescence and adult development: from the perspective of genetic and environmental structure
青春期和成人发展期间的认知和非认知能力与职业发展:从遗传和环境结构的角度
- 批准号:
23K02900 - 财政年份:2023
- 资助金额:
$ 22.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does social motivation in adolescence differentially predict the impact of childhood threat exposure on developing suicidal thoughts and behaviors
青春期的社会动机是否可以差异预测童年威胁暴露对自杀想法和行为的影响
- 批准号:
10785373 - 财政年份:2023
- 资助金额:
$ 22.04万 - 项目类别:
Mapping the Neurobiological Risks and Consequences of Alcohol Use in Adolescence and Across the Lifespan
绘制青春期和整个生命周期饮酒的神经生物学风险和后果
- 批准号:
10733406 - 财政年份:2023
- 资助金额:
$ 22.04万 - 项目类别:
Thalamo-prefrontal circuit maturation during adolescence
丘脑-前额叶回路在青春期成熟
- 批准号:
10585031 - 财政年份:2023
- 资助金额:
$ 22.04万 - 项目类别:
The Role of Sleep in the Relationships Among Adverse Childhood Experiences, Mental Health Symptoms, and Persistent/Recurrent Pain during Adolescence
睡眠在不良童年经历、心理健康症状和青春期持续/复发性疼痛之间关系中的作用
- 批准号:
10676403 - 财政年份:2023
- 资助金额:
$ 22.04万 - 项目类别:
Interdisciplinary Perspectives on the Politics of Adolescence and Democracy
青少年政治与民主的跨学科视角
- 批准号:
EP/X026825/1 - 财政年份:2023
- 资助金额:
$ 22.04万 - 项目类别:
Research Grant
Harnessing digital data to study 21st-century adolescence
利用数字数据研究 21 世纪青春期
- 批准号:
MR/X028801/1 - 财政年份:2023
- 资助金额:
$ 22.04万 - 项目类别:
Research Grant