Sampling and Inference for Large Networks

大型网络的采样和推理

基本信息

  • 批准号:
    RGPIN-2017-05480
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

In the current landscape of "Big Data", large networks (graphs) are pervasive objects and have attracted much interest. A (social) network is a complex relational graph consisting of nodes (actors) and edges (relations), where both nodes and edges may have a number of attributes (covariates) associated with them. Examples include social networks such as Facebook, citation and collaboration networks (such as arXiv), web graphs (such as Wikipedia) and communication networks. Researchers are interested in modelling network structures and relations, as well as how these depend on the node and edge attributes; and, possibly, how they evolve over time. The investigation and analysis of these large networks can prove difficult due to the sheer number of nodes and edges and associated attribute data. Another difficulty that researchers are faced with is the prospect of having only a single observed network from which estimates are obtained. The general objectives for this research are to investigate efficient sampling methods on networks and to investigate both parametric and nonparametric inference for network models based on samples using both frequentist and Bayesian methods.***Specific program objectives include research on specific sampling techniques, such as ranked based sampling techniques and resampling techniques, for making inferences about large networks when analyzing the whole network is not computationally feasible. Through this research, I plan to train at least three M.Sc. students and two Ph.D. students as well as fixe undergraduate students.
在当前的“大数据”格局中,大型网络(图)是普遍存在的对象,并引起了人们的广泛兴趣。 (社交)网络是由节点(参与者)和边(关系)组成的复杂关系图,其中节点和边都可能具有与其关联的多个属性(协变量)。 示例包括 Facebook 等社交网络、引用和协作网络(如 arXiv)、网络图(如维基百科)和通信网络。 研究人员对网络结构和关系建模以及它们如何依赖于节点和边缘属性感兴趣;以及它们如何随着时间的推移而演变。 由于节点和边以及相关属性数据的数量庞大,对这些大型网络的调查和分析可能会很困难。 研究人员面临的另一个困难是只能通过一个观察网络来获得估计值。 本研究的总体目标是研究网络上的有效采样方法,并使用频率论和贝叶斯方法研究基于样本的网络模型的参数和非参数推理。***具体计划目标包括研究特定采样技术,例如基于排序的采样技术和重采样技术,以便在分析整个网络在计算上不可行时对大型网络进行推理。 通过这项研究,我计划培养至少三名硕士学位。学生和两名博士。学生以及固定本科生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Johnson, Brad其他文献

Central mucoepidermoid carcinoma with an atypical radiographic appearance
Physical activity and telomere length in early stage breast cancer survivors
  • DOI:
    10.1186/s13058-014-0413-y
  • 发表时间:
    2014-01-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Garland, Sheila N.;Johnson, Brad;Mao, Jun J.
  • 通讯作者:
    Mao, Jun J.

Johnson, Brad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Johnson, Brad', 18)}}的其他基金

Sampling and Inference for Large Networks
大型网络的采样和推理
  • 批准号:
    RGPIN-2017-05480
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Sampling and Inference for Large Networks
大型网络的采样和推理
  • 批准号:
    RGPIN-2017-05480
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Sampling and Inference for Large Networks
大型网络的采样和推理
  • 批准号:
    RGPIN-2017-05480
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Sampling and Inference for Large Networks
大型网络的采样和推理
  • 批准号:
    RGPIN-2017-05480
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Runs and patterns, coupon collecting and permutations
运行和模式、优惠券收集和排列
  • 批准号:
    327123-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Runs and patterns, coupon collecting and permutations
运行和模式、优惠券收集和排列
  • 批准号:
    327123-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Runs and patterns, coupon collecting and permutations
运行和模式、优惠券收集和排列
  • 批准号:
    327123-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
  • 批准号:
    2339084
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Continuing Grant
Causal inference of oral and general health using multiple large cohorts, NDB, and hospital data
使用多个大型队列、NDB 和医院数据对口腔和一般健康状况进行因果推断
  • 批准号:
    23H03117
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Distributed Machine Learning Methodology and System for Real-time Inference with Large-scale Point Clouds Towards Mobility Innovation
利用大规模点云进行实时推理的分布式机器学习方法和系统,迈向移动创新
  • 批准号:
    23H00464
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Regularization and approximation: statistical inference, model selection, and large data
正则化和近似:统计推断、模型选择和大数据
  • 批准号:
    RGPIN-2021-02618
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Learning and inference with large image corpora
使用大型图像语料库进行学习和推理
  • 批准号:
    RGPIN-2020-06848
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methods for large-scale inference
大规模推理的统计方法
  • 批准号:
    RGPIN-2020-04739
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Data-Centric Methods for Inference and Prediction of Large-Scale Complex Systems
用于大规模复杂系统推理和预测的以数据为中心的新方法
  • 批准号:
    RGPIN-2018-03735
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Inference and computational methods for mixed models with large or complex data
具有大量或复杂数据的混合模型的推理和计算方法
  • 批准号:
    RGPIN-2016-05883
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Fast and Accurate Statistical Learning and Inference from Large-Scale Data: Theory, Methods, and Algorithms
职业:从大规模数据中快速准确地进行统计学习和推理:理论、方法和算法
  • 批准号:
    2046874
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Continuing Grant
Robust and Efficient Statistical Inference in Large Scale Semi-Supervised Settings
大规模半监督环境中稳健且高效的统计推断
  • 批准号:
    2113768
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了