Inference and variable selection in semiparametric survival models with censored or missing data
具有删失或缺失数据的半参数生存模型中的推理和变量选择
基本信息
- 批准号:261567-2013
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Millions of people are killed by cancer each year. There are evidences that the survival time of cancer patients depends on many risk factors. Some of the risk factors are obvious and well studied, e.g. smoke habits and alcohol abuse, while many others are hidden in the human's genes and DNAs, which are not easy to observe and handle. In recent years, breakthroughs in biomedical technology have made it possible to obtain hundreds of thousands of gene expression measurements, along with the clinical information about the survival outcomes of patients. In this case, researchers and practitioners are interested in (1) identifying features (or genes, covariates) that are associated with survival, so that they can examine their precise roles, and (2) developing a multivariate model for the relationship between the features and the survival time that can be used to predict survival in a new observation and to identify better treatment strategies for cancers.
Due to the high dimensionality of the data, it is an unprecedented challenge to find tens of important variables out of hundreds of thousands of predictors, with number of patients or observations usually in tens or hundreds. This is as hard as finding a couple of needles in a huge haystack. The proposed new statistical methods meet the challenges and shed light on the difficult problems in variable selection. The proposed program includes a wealth of new problems for methodological research and training of highly qualified personnel (HQP). The theoretical developments involved in this program will extend the scope of current knowledge about statistical theory for high-dimensional survival data. The proposed statistical methods have considerable practical applications in prevalence studies of human diseases such as cancer and AIDS. The anticipated results will be published in refereed scientific journals, and will be used by practitioners to identify important genes related to diseases, predict survival accurately, and then provide better health care for patients and new treatment solutions for various diseases.
每年有数百万人死于癌症。有证据表明,癌症患者的生存时间取决于许多危险因素。一些危险因素是显而易见的,也得到了充分的研究,例如吸烟习惯和酗酒,而其他许多因素隐藏在人类的基因和DNA中,不容易观察和处理。近年来,生物医学技术的突破使获得数十万个基因表达测量以及有关患者生存结果的临床信息成为可能。在这种情况下,研究人员和从业者感兴趣的是(1)识别与生存相关的特征(或基因、协变量),以便他们能够检查它们的确切作用,以及(2)开发特征与生存时间之间的关系的多变量模型,该模型可用于在新的观察中预测生存并确定更好的癌症治疗策略。
由于数据的高维度,从数十万个预测变量中找到数万个重要变量是一个前所未有的挑战,患者或观察人数通常在数十或数百人左右。这就像在大海捞针一样困难。提出的新的统计方法迎接了挑战,并揭示了变量选择中的难题。拟议的计划包括在方法学研究和高素质人才培训(HQP)方面的大量新问题。这一计划所涉及的理论发展将扩大目前关于高维生存数据统计理论的知识范围。所提出的统计方法在癌症和艾滋病等人类疾病的流行研究中有相当大的实际应用。预期结果将发表在经评审的科学期刊上,并将被从业者用来识别与疾病相关的重要基因,准确预测生存,然后为患者提供更好的医疗保健和各种疾病的新治疗方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lu, Xuewen其他文献
Estimation of the Birnbaum-Saunders regression model with current status data
使用当前状态数据估计 Birnbaum-Saunders 回归模型
- DOI:
10.1016/j.csda.2009.08.013 - 发表时间:
2010-02 - 期刊:
- 影响因子:0
- 作者:
Xiao, Qingchu;Liu, Zaiming;Balakrishnan, N.;Lu, Xuewen - 通讯作者:
Lu, Xuewen
Real-time quantitative PCR detection of circulating tumor cells using tag DNA mediated signal amplification strategy
使用标签DNA介导的信号放大策略实时定量PCR检测循环肿瘤细胞
- DOI:
10.1016/j.jpba.2018.06.009 - 发表时间:
2018-09-05 - 期刊:
- 影响因子:3.4
- 作者:
Mei, Ting;Lu, Xuewen;Fang, Zhiyuan - 通讯作者:
Fang, Zhiyuan
Improved performance of lateral flow immunoassays for alpha-fetoprotein and vanillin by using silica shell-stabilized gold nanoparticles
使用二氧化硅壳稳定的金纳米粒子提高甲胎蛋白和香草醛的侧流免疫分析性能
- DOI:
10.1007/s00604-018-3107-9 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:5.7
- 作者:
Lu, Xuewen;Mei, Ting;Fang, Zhiyuan - 通讯作者:
Fang, Zhiyuan
A bibliometric analysis of publications on obsessive-compulsive disorder using VOSviewer.
- DOI:
10.3389/fpsyt.2023.1136931 - 发表时间:
2023 - 期刊:
- 影响因子:4.7
- 作者:
Tang, Yimiao;Lu, Xuewen;Wan, Xin;Hu, Maorong - 通讯作者:
Hu, Maorong
Longitudinal Data Analysis with Event Time as a Covariate
- DOI:
10.1007/s12561-010-9021-2 - 发表时间:
2010-07-01 - 期刊:
- 影响因子:1
- 作者:
Lu, Xuewen;Nan, Bin;Sowers, MaryFran - 通讯作者:
Sowers, MaryFran
Lu, Xuewen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lu, Xuewen', 18)}}的其他基金
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Inference and variable selection in semiparametric survival models with censored or missing data
具有删失或缺失数据的半参数生存模型中的推理和变量选择
- 批准号:
261567-2013 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Inference and variable selection in semiparametric survival models with censored or missing data
具有删失或缺失数据的半参数生存模型中的推理和变量选择
- 批准号:
261567-2013 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Inference and variable selection in semiparametric survival models with censored or missing data
具有删失或缺失数据的半参数生存模型中的推理和变量选择
- 批准号:
261567-2013 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Inference and variable selection in semiparametric survival models with censored or missing data
具有删失或缺失数据的半参数生存模型中的推理和变量选择
- 批准号:
261567-2013 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Semiparametric statistical methods for censored or missing data and their applications in survival analysis and other related areas
截尾或缺失数据的半参数统计方法及其在生存分析和其他相关领域的应用
- 批准号:
261567-2008 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Drp1—Variable结构域在继发性脊髓损伤中调节线粒体功能的机制研究
- 批准号:81974335
- 批准年份:2019
- 资助金额:54.0 万元
- 项目类别:面上项目
基于蛋白质组学和代谢组学整合分析的Paraconiothyrium variable GHJ-4降解木质素的分子机制
- 批准号:31200450
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
考虑外源变量的空间copula插值模型的开发及其在降雨和地下水水质插值上的验证
- 批准号:41101020
- 批准年份:2011
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
人源化抗肿瘤单链抗体的筛选
- 批准号:30300313
- 批准年份:2003
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing variable selection methods and post-selection inference under double-descent phenomena
开发双下降现象下的变量选择方法和选择后推理
- 批准号:
23K18471 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Longitudinal data subject to irregular observation: developing methods for variable selection, causal inference, and measurement error
不规则观察的纵向数据:开发变量选择、因果推断和测量误差的方法
- 批准号:
RGPIN-2021-02733 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Longitudinal data subject to irregular observation: developing methods for variable selection, causal inference, and measurement error
不规则观察的纵向数据:开发变量选择、因果推断和测量误差的方法
- 批准号:
RGPIN-2021-02733 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Model and variable selection for causal inference
因果推理的模型和变量选择
- 批准号:
RGPIN-2016-06295 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Model and variable selection for causal inference
因果推理的模型和变量选择
- 批准号:
RGPIN-2016-06295 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Model and variable selection for causal inference
因果推理的模型和变量选择
- 批准号:
RGPIN-2016-06295 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Model and variable selection for causal inference
因果推理的模型和变量选择
- 批准号:
RGPIN-2016-06295 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Developing New Algebraic Geometric Information Criteria for Monte Carlo Inference and Model Selection in Latent Variable and Missing Data Problems
为潜变量和缺失数据问题中的蒙特卡罗推理和模型选择开发新的代数几何信息准则
- 批准号:
261488-2012 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Inference and variable selection in semiparametric survival models with censored or missing data
具有删失或缺失数据的半参数生存模型中的推理和变量选择
- 批准号:
261567-2013 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Model and variable selection for causal inference
因果推理的模型和变量选择
- 批准号:
RGPIN-2016-06295 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




