Hydrogen in Metals

金属中的氢

基本信息

  • 批准号:
    RGPIN-2017-06359
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Hydrogen is ubiquitous in metals, it enters during production and from corrosion during service. Hydrogen causes embrittlement, hardening and internal damage. Hydrogen can reduce fracture toughness and, in some metals, hydrogen can precipitate forming brittle hydrides that crack under load. The process is called Delayed Hydride Cracking (DHC) and it is a particular problem for zirconium alloys that are used in chemical and nuclear plants as pressure boundaries. The consequence of cracking under pressure can be violent release of high temperature steam. Failure of zirconium alloys used to contain nuclear fuel could mean release of radioactivity during reactor operation and later when the spent fuel is in long-term storage. Currently, safe operation with zirconium alloys is ensured by placing very conservative limits on operating conditions.*** In spite of decades of research there is still much to learn about hydrogen in zirconium. Recently, the applicant's research group has reported hydrides in zirconium dissolving when cooled, and precipitating when heated, which is truly bizarre. We expect the opposite to happen: things dissolve when heated and precipitate when cooled. These observations are unprecedented, and so is the explanation being developed. This bizarre behavior only happens over a small temperature range, but it happens at the temperatures where reactors and chemical plants operate. The implications for how properties of zirconium change with hydrogen ingress are beginning to show: hydrogen diffusion changes, and delayed hydride cracking occurs at temperatures where you do not expect hydrides to form.*** Models of DHC have been developing since the mid-70s. In the last 10 years these models have been critically questioned. The applicant's research group have introduced a new model for DHC that has successfully been used to predict a broad spectrum of experimental results; this is unprecedented and exciting, and incorporates a better understanding of the underlying physics. A reliable robust physical model of DHC will lead to better predictions of failures of zirconium components and, thus, improved safety for chemical plants, nuclear reactors and spent nuclear fuel in long-term storage.***A new understanding is emerging of how hydrogen and hydrides behave in metals, and in zirconium alloys in particular. The goal of this proposal is to have fun with a group of talented students systematically exploring the implications of this new understanding, and taking it to a higher level.******
氢在金属中无处不在,它在生产过程中进入,在使用过程中因腐蚀而进入。 氢会导致脆化、硬化和内部损坏。 氢可以降低断裂韧性,并且在某些金属中,氢可以沉淀形成在负载下开裂的脆性金属。 这个过程被称为延迟氢化物开裂(DHC),这是一个特殊的问题,锆合金用于化学和核电站的压力边界。 在压力下破裂的后果可能是高温蒸汽的剧烈释放。 用于容纳核燃料的锆合金的失效可能意味着在反应堆运行期间以及以后乏燃料长期储存时释放放射性。目前,锆合金的安全操作是通过对操作条件设置非常保守的限制来确保的。*** 尽管经过了数十年的研究,但关于锆中的氢仍然有很多需要了解的地方。 最近,申请人的研究小组报告了锆在冷却时溶解,而在加热时沉淀,这真是奇怪。 我们期望相反的事情发生:当加热时溶解,当冷却时沉淀。 这些观察结果是前所未有的,正在发展的解释也是如此。 这种奇怪的行为只发生在一个很小的温度范围内,但它发生在反应堆和化工厂运行的温度下。 随着氢的进入,锆的性质如何变化的影响开始显现:氢扩散变化,并且在预计不会形成氢化物的温度下发生延迟氢化物开裂。* DHC模型自70年代中期以来一直在发展。 在过去的10年里,这些模型受到了严重的质疑。 申请人的研究小组已经引入了一种新的DHC模型,该模型已成功用于预测广泛的实验结果;这是前所未有的,令人兴奋的,并结合了对基础物理学的更好理解。一个可靠的DHC物理模型将有助于更好地预测锆部件的故障,从而提高化工厂、核反应堆和长期储存的乏核燃料的安全性。人们对氢和氘在金属中,特别是在锆合金中的行为有了新的认识。 本提案的目标是与一群有才华的学生一起系统地探索这种新理解的含义,并将其提升到更高的水平。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

McRae, Glenn其他文献

McRae, Glenn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('McRae, Glenn', 18)}}的其他基金

Hydrogen in Metals
金属中的氢
  • 批准号:
    RGPIN-2017-06359
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Hydrogen in Metals
金属中的氢
  • 批准号:
    RGPIN-2017-06359
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Hydrogen in Metals
金属中的氢
  • 批准号:
    RGPIN-2017-06359
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Sequencing duel-stage batch reactor for processing agriculture and greenhouse waste
用于处理农业和温室废物的测序双级间歇式反应器
  • 批准号:
    533316-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Engage Grants Program
Hydrogen in Metals
金属中的氢
  • 批准号:
    RGPIN-2017-06359
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Prediction of hydrogen isotope distributions in pressure tubes
压力管中氢同位素分布的预测
  • 批准号:
    500260-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Engage Grants Program
Separation and purification unit for Tc-99m produced by low energy cyclotrons
低能回旋加速器生产的Tc-99m分离纯化装置
  • 批准号:
    468551-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Collaborative Research and Development Grants
Advanced biofuel for steel production
用于钢铁生产的先进生物燃料
  • 批准号:
    479590-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Engage Grants Program
Delayed hydride cracking of zirconium alloys
锆合金的延迟氢化物裂解
  • 批准号:
    386370-2010
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Separation and purification unit for Tc-99m produced by low energy cyclotrons
低能回旋加速器生产的Tc-99m分离纯化装置
  • 批准号:
    468551-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

Rare Metals(稀有金属(英文版))
  • 批准号:
    51224002
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Elucidating the mechanism of hydrogen entry into metals under corrosive environment using an ultrasensitive hydrogen visualization system
使用超灵敏氢可视化系统阐明腐蚀环境下氢进入金属的机制
  • 批准号:
    23K13570
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Low-Coordinate 3d Metal Complexes as Alternatives to Platinum Group Metals for Hydrogen Evolution Reaction
低配位 3d 金属配合物作为析氢反应铂族金属的替代品
  • 批准号:
    2889261
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Studentship
Quantification of damage evolution involved with the interaction of hydrogen, dislocation, and vacancy-type defect in metals ~ For predicting life degradation caused by hydrogen embrittlement ~
量化金属中氢、位错和空位型缺陷相互作用所涉及的损伤演化 ~ 用于预测氢脆引起的寿命退化 ~
  • 批准号:
    23KJ1934
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Eliminating precious metals from hydrogen fuel cells and electrolyzers
消除氢燃料电池和电解槽中的贵金属
  • 批准号:
    RGPIN-2022-03632
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Control of Hydrogen Incorporation into Metals and Synthesis of Superstoichiometric Hydrides by Electrochemical Reaction
电化学反应控制氢掺入金属及超化学计量氢化物的合成
  • 批准号:
    22K04763
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hydrogen in Metals
金属中的氢
  • 批准号:
    RGPIN-2017-06359
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
CAS: Catalytic sp3 Carbon-Hydrogen (C-H) Functionalization with Earth Abundant Metals
CAS:利用地球丰富的金属进行催化 sp3 碳-氢 (C-H) 官能化
  • 批准号:
    2303206
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Mechanism and control of hydrogen storage and supply reactions under inner stress field induced by nano-interface with immiscible metals
难混溶金属纳米界面诱导内应力场储供氢反应机理及控制
  • 批准号:
    21H01744
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of intergranular fracture mechanism in pure Ni improving the strength of hydrogen compatible metals
阐明纯镍的晶间断裂机制,提高氢相容金属的强度
  • 批准号:
    21K14049
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Laser doping effects of hydrogen storage metals for selective hydrogen permeation
储氢金属的激光掺杂对选择性氢渗透的影响
  • 批准号:
    21K14453
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了