A new framework for estimation and inference of optimal dynamic treatment regimes
最佳动态治疗方案估计和推断的新框架
基本信息
- 批准号:RGPIN-2014-05468
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research endeavours to develop a new framework for estimation and inference of dynamic treatment regimes (DTRs), a modern implementation of experimental design, relevant to longitudinally recorded data arising from observational or randomized studies. This topic involves the statistical study of decision rules characterized by taking time-dependent characteristics as inputs such as a symptom score, and returning a treatment to be taken, such as initiation or augmentation of a therapy. Estimation and inference for optimal dynamic treatment rules are complicated by the potentially high-dimensionality of the problem, the presence of time-varying confounding, and the fact that regularity conditions often do not hold so that non-standard asymptotics are required. **The proposed approach stems from an important insight that a particular form of weighted learning can be used to estimate decision rule parameters. The development of a complete framework for estimation and inference will include non-regular asymptotic theory, computational elements, and tools for trial design, including sample size and power formulae and programs. **The impact of this work will be to change the manner in which researchers carry out estimation of dynamic regime parameters, and facilitate the use of a wider variety of outcomes, including discrete utilities, by providing a simple, weighed regression framework for estimation. The work will also provide important insights into the scope and nature of the non-regularity of the estimators, and consequent inferential challenges. More generally, the work will contribute to the important and growing literature on asymptotics at the boundary of the parameter space, which will be of use to a wider statistical audience.
拟议的研究努力为动态治疗方案(DTRs)的估计和推断建立一个新的框架,这是一种实验设计的现代实施,与观察性或随机研究中产生的纵向记录数据相关。本主题涉及决策规则的统计研究,其特征是将时间依赖性特征作为输入,如症状评分,并返回要采取的治疗,如开始或增强治疗。最优动态处理规则的估计和推理由于问题的潜在高维性、时变混杂的存在以及规则条件通常不成立的事实而变得复杂,因此需要非标准渐近。**提出的方法源于一个重要的见解,即可以使用特定形式的加权学习来估计决策规则参数。一个完整的估计和推理框架的发展将包括非正则渐近理论、计算元素和试验设计工具,包括样本量和功率公式和程序。**这项工作的影响将是改变研究人员进行动态制度参数估计的方式,并通过提供一个简单的加权回归估计框架,促进使用更广泛的结果,包括离散效用。这项工作还将提供对估计器的非规律性的范围和性质的重要见解,以及随之而来的推理挑战。更一般地说,这项工作将有助于在参数空间的边界渐近的重要和不断增长的文献,这将使用更广泛的统计受众。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Moodie, Erica其他文献
Moodie, Erica的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Moodie, Erica', 18)}}的其他基金
Causal inference in network settings
网络设置中的因果推断
- 批准号:
RGPIN-2019-04230 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Causal inference in network settings
网络设置中的因果推断
- 批准号:
RGPIN-2019-04230 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Causal inference in network settings
网络设置中的因果推断
- 批准号:
RGPIN-2019-04230 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Causal inference in network settings
网络设置中的因果推断
- 批准号:
RGPIN-2019-04230 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
A new framework for estimation and inference of optimal dynamic treatment regimes
最佳动态治疗方案估计和推断的新框架
- 批准号:
RGPIN-2014-05468 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
A new framework for estimation and inference of optimal dynamic treatment regimes
最佳动态治疗方案估计和推断的新框架
- 批准号:
RGPIN-2014-05468 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
A new framework for estimation and inference of optimal dynamic treatment regimes
最佳动态治疗方案估计和推断的新框架
- 批准号:
RGPIN-2014-05468 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
A new framework for estimation and inference of optimal dynamic treatment regimes
最佳动态治疗方案估计和推断的新框架
- 批准号:
RGPIN-2014-05468 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Optimal adaptive treatment strategies: Finding practical solutions to inferential challenges
最佳适应性治疗策略:寻找推理挑战的实用解决方案
- 批准号:
331271-2009 - 财政年份:2013
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Optimal adaptive treatment strategies: Finding practical solutions to inferential challenges
最佳适应性治疗策略:寻找推理挑战的实用解决方案
- 批准号:
331271-2009 - 财政年份:2012
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
- 批准号:
2340089 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
A Machine Learning Framework for Concrete Workability Estimation
用于混凝土和易性评估的机器学习框架
- 批准号:
LP220100390 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Linkage Projects
Multi-ethnic risk prediction for complex human diseases integrating multi-source genetic and non-genetic information
整合多源遗传与非遗传信息的人类复杂疾病多民族风险预测
- 批准号:
10754773 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Developing a dynamic modeling framework for surveillance, prediction, and real-time resource allocation to reduce health disparities during Covid-19 and future pandemics
开发用于监测、预测和实时资源分配的动态建模框架,以减少 Covid-19 和未来大流行期间的健康差距
- 批准号:
10584876 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Bayesian machine learning for causal inference with incomplete longitudinal covariates and censored survival outcomes
用于不完整纵向协变量和审查生存结果的因果推理的贝叶斯机器学习
- 批准号:
10620291 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
MRC Transition Support: A mathematical modelling framework for tuberculosis burden estimation and economic evaluation of pharmaceutical interventions.
MRC 过渡支持:用于结核病负担估计和药物干预经济评估的数学模型框架。
- 批准号:
MR/W029227/1 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Fellowship
Building Reinforcement Learning and Normative Models in the Cloud
在云中构建强化学习和规范模型
- 批准号:
10825877 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
A Novel Framework "Hierarchical Model" for Radiation Health Risk Estimation
辐射健康风险评估的新框架“层次模型”
- 批准号:
22K04987 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Novel Framework for Automated Simultaneous Model Identification and Parameter Estimation in Kinetic Studies
动力学研究中自动同步模型识别和参数估计的新框架
- 批准号:
2722453 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Studentship