Real-time Machine Intelligence for Assistive Technology
辅助技术的实时机器智能
基本信息
- 批准号:RGPIN-2015-03646
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
During every-day life, humans leverage a detailed stream of sensation and actuation to interpret and manipulate the world around them. However, when a body part is lost or damaged-for example, through accident, illness, or birth complications-an individual can suffer a significant reduction in their ability to interact with the world and, as a consequence, reduced quality of life. New computing methods and assistive technologies are essential to augmenting and restoring an injured individual's sensory and motor abilities. My proposed research program focuses on a concrete example of this theme: using machine intelligence to create richer and more powerful interfaces to bridge the gap between a human and a robotic artificial limb that is affixed to their body. Designers of assistive robots of this kind face a number of challenges, perhaps the most significant of which is the development of natural, flexible control and communication methods that connect users to their assistive devices. It is apparent that traditional approaches to control and communication will become insufficient when faced with an increasing repertoire of diverse, data-dense sensor and actuation technologies. The literature also indicates that artificial limbs are in need of adaptive control systems-interfaces that adapt to both the unique factors in each individual and the day-to-day changes that occur in the user and their environment.***With this in mind, my proposed program of research will study, develop, and evaluate machine intelligence methods that accelerate progress on next-generation artificial limb technologies. In addition to studying core principles of machine intelligence and human-machine interaction, my proposed work will translate new algorithmic advances to practical use and assess their strengths and weaknesses during real-world deployment. I will focus specifically on computationally efficient approaches to prediction learning, control learning, and meta-learning that are suitable for ongoing use within a wearable robot. As such, I will employ techniques from the area of reinforcement learning; my work will have its foundation in temporally extended predictions made via generalized value functions, and in actor-critic policy gradient methods. The ultimate goal of this program of research is to create a complete system of representation, prediction, control, and meta-learning that enables seamless collaboration between a human and their assistive technology. Being an active part of my proposed program of research will significantly enhance the academic development and career potential for my current students and those that join over the course of the program. Furthermore, platform technologies generated by this program will contribute directly to progress in the theory and practice of reinforcement learning, and will be readily transferrable to medical and commercial domains.**
在日常生活中,人类利用一系列细致的感觉和冲动来解释和操纵周围的世界。然而,当身体的某个部分丢失或损坏时,例如,由于事故、疾病或出生并发症,个体与世界互动的能力会显著降低,从而降低生活质量。新的计算方法和辅助技术对于增强和恢复受伤个体的感觉和运动能力至关重要。我提出的研究计划侧重于这一主题的一个具体例子:使用机器智能创建更丰富和更强大的接口,以弥合人类与固定在其身体上的机器人假肢之间的差距。这类辅助机器人的设计者面临着许多挑战,其中最重要的可能是开发自然,灵活的控制和通信方法,将用户连接到他们的辅助设备。很明显,传统的控制和通信方法在面对越来越多的多样化、数据密集的传感器和致动技术时将变得不够。文献还表明,假肢需要自适应控制系统,即适应每个人的独特因素以及用户及其环境中发生的日常变化的界面。考虑到这一点,我提出的研究计划将研究,开发和评估机器智能方法,以加速下一代假肢技术的进展。除了研究机器智能和人机交互的核心原则外,我的工作还将把新算法的进步转化为实际应用,并评估它们在实际部署中的优势和劣势。我将特别关注预测学习、控制学习和元学习的计算效率方法,这些方法适合在可穿戴机器人中持续使用。 因此,我将采用强化学习领域的技术;我的工作将以通过广义值函数进行的时间扩展预测和行动者-批评者策略梯度方法为基础。该研究计划的最终目标是创建一个完整的表示,预测,控制和元学习系统,使人类和他们的辅助技术之间能够无缝协作。作为我提出的研究计划的积极组成部分,将显着提高我目前的学生和那些在程序的过程中加入的学术发展和职业潜力。此外,该计划产生的平台技术将直接促进强化学习理论和实践的进步,并将很容易转移到医疗和商业领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pilarski, Patrick其他文献
Pilarski, Patrick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pilarski, Patrick', 18)}}的其他基金
Real-time Machine Intelligence for Assistive Technology
辅助技术的实时机器智能
- 批准号:
RGPIN-2015-03646 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Machine Intelligence for Rehabilitation Technology
康复技术的机器智能
- 批准号:
1000230958-2015 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Canada Research Chairs
Real-time Machine Intelligence for Assistive Technology
辅助技术的实时机器智能
- 批准号:
RGPIN-2015-03646 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Real-time Machine Intelligence for Assistive Technology
辅助技术的实时机器智能
- 批准号:
RGPIN-2015-03646 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Machine Intelligence for Rehabilitation Technology
康复技术的机器智能
- 批准号:
1000230958-2015 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Canada Research Chairs
Machine Intelligence for Rehabilitation Technology
康复技术的机器智能
- 批准号:
1000230958-2015 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Canada Research Chairs
Machine Intelligence for Rehabilitation Technology
康复技术的机器智能
- 批准号:
1000230958-2015 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Canada Research Chairs
Real-time Machine Intelligence for Assistive Technology
辅助技术的实时机器智能
- 批准号:
RGPIN-2015-03646 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Real-time Machine Intelligence for Assistive Technology
辅助技术的实时机器智能
- 批准号:
RGPIN-2015-03646 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Machine Intelligence for Rehabilitation Technology
康复技术的机器智能
- 批准号:
1000230958-2015 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Canada Research Chairs
相似国自然基金
SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
- 批准号:82360504
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
- 批准号:82305023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
- 批准号:62171167
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
- 批准号:31971706
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
Time-of-Flight深度相机多径干扰问题的研究
- 批准号:61901435
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
高频数据波动率统计推断、预测与应用
- 批准号:71971118
- 批准年份:2019
- 资助金额:50.0 万元
- 项目类别:面上项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
- 批准号:71771224
- 批准年份:2017
- 资助金额:49.0 万元
- 项目类别:面上项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Toxicology-testing platform integrating immunocompetent in vitro/ex vivo modules with real-time sensing and machine learning based in silico models for life cycle assessment and SSbD
毒理学测试平台,将免疫活性体外/离体模块与基于硅模型的实时传感和机器学习相结合,用于生命周期评估和 SSbD
- 批准号:
10100967 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
EU-Funded
SHF: Core: Small: Real-time and Energy-Efficient Machine Learning for Robotics Applications
SHF:核心:小型:用于机器人应用的实时且节能的机器学习
- 批准号:
2341183 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Utilising alternative data to develop a machine learning-based artificial intelligence platform for real-time KPI tracking of UK companies for fundamental investors
利用另类数据开发基于机器学习的人工智能平台,为基本面投资者实时跟踪英国公司的 KPI
- 批准号:
10057969 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Collaborative R&D
A novel automated machine learning platform for predictive yield optimisation and real time tracking and tracing.
一种新颖的自动化机器学习平台,用于预测产量优化和实时跟踪和追踪。
- 批准号:
10064479 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Collaborative R&D
Machine Learning for Real Time Volcano-Seismic Monitoring.
用于实时火山地震监测的机器学习。
- 批准号:
2843375 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Studentship
Optimization of monitoring, prediction and phenotyping of deterioration of inhospital patients using machine learning and multimodal real time data
使用机器学习和多模态实时数据优化住院患者病情恶化的监测、预测和表型分析
- 批准号:
10735863 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Real-Time & Generalizable Flood Simulation Emulator using Numerical Analysis and Machine Learning
即时的
- 批准号:
23KJ1685 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Real-time assessment of alcohol and drug use and development of immediate intervention model based on machine learning
基于机器学习的酒精和药物使用实时评估及即时干预模型开发
- 批准号:
23H03192 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
SCH: Quantifying and mitigating demographic biases of machine learning in real world radiology
SCH:量化和减轻现实世界放射学中机器学习的人口统计偏差
- 批准号:
10818941 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
A study on high-precision real-time tracking of mobile devices and its application to contactless identification by using machine learning
移动设备高精度实时跟踪及其在机器学习非接触式识别中的应用研究
- 批准号:
23K03889 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)