Harmonic Analysis, Function Theory and Partial Differential Equations
调和分析、函数论和偏微分方程
基本信息
- 批准号:RGPIN-2015-06688
- 负责人:
- 金额:$ 1.24万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The applicant proposes to continue research into the circle of ideas surrounding***1) characterizing two weight inequalities for singular integral operators, and***2) investigating interpolation and corona problems in higher dimensions,***3) developing the regularity theory of subelliptic partial differential*equations such as the Monge-Ampere and nonlinear wave equations,***4) investigating harmonic analysis questions for polynomial growth measures.***Major problems are overcome in these investigations through a multidisciplinary approach bringing together ideas from analysis, geometry, algebra, combinatorics and operator theory. Two examples include the solution to the corona problem for the Drury-Arveson space in higher dimensions and the solution to the two weight inequality for the Hilbert transform. The corona problem was solved using solutions to the d-bar problem in partial differential equations, the geometry of holomorphic functions, the algebra of forms, the combinatorics of rogue factors and estimates for positive operators on the ball. The two weight problem was solved with an interplay between Haar decompositions, the geometry of the Hilbert transform, and the algebra and combinatorics of the associated dyadic multiscale analysis. We propose to continue investigations toward settling the famous corona problem for bounded analytic functions in higher dimensions and the two weight inequalities for Riesz transforms and related operators in higher dimensions.**
申请人建议继续研究围绕 *1)表征奇异积分算子的两个权重不等式,以及 *2)研究更高维度中的插值和电晕问题,*3)发展诸如Monge-Ampere和非线性波动方程的次椭圆偏微分 * 方程的正则性理论,*4)研究多项式增长测度的调和分析问题。*主要问题是克服这些调查通过多学科的方法汇集的想法,从分析,几何,代数,组合学和算子理论。两个例子包括解决的电晕问题的Drury-Arveson空间在高维和解决的两个重量不等式的希尔伯特变换。电晕问题的解决是使用偏微分方程中的d杆问题的解决方案,全纯函数的几何,形式代数,流氓因子的组合学和球上正算子的估计。两个权重的问题解决了哈尔分解之间的相互作用,希尔伯特变换的几何,以及相关的并矢多尺度分析的代数和组合学。我们建议继续研究解决高维中有界解析函数的著名电晕问题以及高维中Riesz变换和相关算子的两个权不等式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sawyer, Eric其他文献
The effect of surface finish on tensile behavior of additively manufactured tensile bars
- DOI:
10.1007/s10853-015-9702-9 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:4.5
- 作者:
Everhart, Wes;Sawyer, Eric;Brown, Ben - 通讯作者:
Brown, Ben
Sawyer, Eric的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sawyer, Eric', 18)}}的其他基金
Weighted norm inequalities for singular integrals
奇异积分的加权范数不等式
- 批准号:
RGPIN-2020-06829 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Weighted norm inequalities for singular integrals
奇异积分的加权范数不等式
- 批准号:
RGPIN-2020-06829 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Weighted norm inequalities for singular integrals
奇异积分的加权范数不等式
- 批准号:
RGPIN-2020-06829 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Harmonic Analysis, Function Theory and Partial Differential Equations
调和分析、函数论和偏微分方程
- 批准号:
RGPIN-2015-06688 - 财政年份:2019
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Harmonic Analysis, Function Theory and Partial Differential Equations
调和分析、函数论和偏微分方程
- 批准号:
RGPIN-2015-06688 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Harmonic Analysis, Function Theory and Partial Differential Equations
调和分析、函数论和偏微分方程
- 批准号:
RGPIN-2015-06688 - 财政年份:2016
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Harmonic Analysis, Function Theory and Partial Differential Equations
调和分析、函数论和偏微分方程
- 批准号:
RGPIN-2015-06688 - 财政年份:2015
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Subelliptic nonlinear equations and function theory
次椭圆非线性方程和函数论
- 批准号:
5149-2010 - 财政年份:2014
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Subelliptic nonlinear equations and function theory
次椭圆非线性方程和函数论
- 批准号:
5149-2010 - 财政年份:2013
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Subelliptic nonlinear equations and function theory
次椭圆非线性方程和函数论
- 批准号:
5149-2010 - 财政年份:2012
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
The Frequency Function Method in Elliptic Partial Differential Equations and Harmonic Analysis
椭圆偏微分方程与调和分析中的频率函数法
- 批准号:
2247185 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
Function algebras and operator algebras arising in noncommutative harmonic analysis
非交换调和分析中出现的函数代数和算子代数
- 批准号:
2599047 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Studentship
Harmonic analysis: function spaces and partial differential equations
调和分析:函数空间和偏微分方程
- 批准号:
DP190100970 - 财政年份:2019
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Projects
Harmonic Analysis, Function Theory and Partial Differential Equations
调和分析、函数论和偏微分方程
- 批准号:
RGPIN-2015-06688 - 财政年份:2019
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Harmonic Analysis, Function Theory and Partial Differential Equations
调和分析、函数论和偏微分方程
- 批准号:
RGPIN-2015-06688 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Function spaces in harmonic analysis
调和分析中的函数空间
- 批准号:
229655-2013 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Operators on some function spaces in harmonic analysis
调和分析中某些函数空间上的运算符
- 批准号:
17K05289 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deepening of theory of function spaces originated in Wiener's generalized harmonic analysis and its development
函数空间理论的深化源于维纳的广义调和分析及其发展
- 批准号:
17K05306 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Harmonic Analysis, Function Theory and Partial Differential Equations
调和分析、函数论和偏微分方程
- 批准号:
RGPIN-2015-06688 - 财政年份:2016
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual