Hierarchical Machine Learning for Information Networks

信息网络的分层机器学习

基本信息

  • 批准号:
    RGPIN-2018-05938
  • 负责人:
  • 金额:
    $ 2.99万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Machine learning for Artificial Intelligence (AI) is a key technology for the future, which has seen strong investment from Canadian governments and businesses. The most advanced AI systems use the most informative data. Especially valuable are information networks that describe links between objects. These links can be material, as in a computer network, or represent abstract relationships, like friendships in a social network, or spatial relationships in an image. Information networks are ubiquitous, maintained by many organizations in a relational database. The goal of my research program is to develop new machine learning methods that leverage, analyze, and integrate the heterogeneous and interdependent data sources in an information network. Machine learning for information networks has led to state-of-the-art performance in several data analysis tasks, such as link-based classification and clustering, link prediction, database query optimization, exception mining, anomaly and fraud detection. A cutting-edge application is extracting network information from massive data sets containing text and/or images. For instance, Google researchers have applied machine learning to web information to build an information network (called the knowledge graph) that contains 570M nodes (entities) and 1.8 billion facts (relationships and attributes). ******The proposed research develops methods that leverage a class ontology to learn a graphical model for a large information network. A graphical model (such as a Bayesian network or a causal graph) can be viewed as a probabilistic knowledge base that represents statistical patterns among nodes, links, and attributes of nodes and links. Graphical model learning therefore provides automated construction of large knowledge bases, which support many data analysis tasks, including link-based predictions and information extraction. In many complex domains, ontologies or class hierarchies are available that provide valuable knowledge about the structure of a domain. For example, in a public university, a faculty member is a department employee, who is a university employee, who is a government employee. My research will investigate how class hierarchies increase the validity of statistical conclusions, the accuracy of statistical models, and the computational scalability of statistical learning for information networks. ******Machine learning for information networks is a fundamental technology for next-generation AI applications, such as extracting structured information from massive text and visual data. The proposed research will contribute an important component technology, graphical model learning and automated knowledge base construction. Students will be trained to develop methods for machine learning from information networks, and to apply them in Canadian industry.
人工智能(AI)的机器学习是未来的关键技术,该技术已经获得了加拿大政府和企业的大量投资。最先进的AI系统使用最有用的数据。特别有价值的是描述对象之间链接的信息网络。这些链接可以像计算机网络中一样是物质的,也可以代表抽象的关系,例如社交网络中的友谊或图像中的空间关系。信息网络无处不在,许多组织在关系数据库中维护。我的研究计划的目的是开发新的机器学习方法,以利用,分析和整合信息网络中的异质和相互依存的数据源。信息网络的机器学习导致了多个数据分析任务的最新性能,例如基于链接的分类和聚类,链接预测,数据库查询优化,异常挖掘,异常和欺诈检测。 尖端应用程序是从包含文本和/或图像的大量数据集中提取网络信息。例如,Google研究人员将机器学习应用于Web信息,以构建一个包含5.7亿节点(实体)和18亿个事实(关系和属性)的信息网络(称为知识图)。 *****拟议的研究开发了利用类本体论来学习大型信息网络的图形模型的方法。可以将图形模型(例如贝叶斯网络或因果图)视为概率知识库,该知识库代表节点,链接和节点和链接属性之间的统计模式。因此,图形模型学习提供了大型知识库的自动构造,这些构建支持许多数据分析任务,包括基于链接的预测和信息提取。在许多复杂的领域中,可以使用有关域结构的宝贵知识。例如,在公立大学中,一名教职员工是一名部门雇员,是一名大学雇员,是政府雇员。我的研究将研究类层次结构如何提高统计结论的有效性,统计模型的准确性以及信息网络的统计学习的计算可扩展性。 ******信息网络的机器学习是用于下一代AI应用程序的基本技术,例如从大量文本和视觉数据中提取结构化信息。拟议的研究将贡献重要的组成技术,图形模型学习和自动化知识库构建。将对学生进行培训,以开发从信息网络学习机器学习的方法,并将其应用于加拿大行业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Schulte, Oliver其他文献

Biased penalty calls in the National Hockey League
  • DOI:
    10.1002/sam.11320
  • 发表时间:
    2016-10-01
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Beaudoin, David;Schulte, Oliver;Swartz, Tim B.
  • 通讯作者:
    Swartz, Tim B.

Schulte, Oliver的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Schulte, Oliver', 18)}}的其他基金

Hierarchical Machine Learning for Information Networks
信息网络的分层机器学习
  • 批准号:
    RGPIN-2018-05938
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Hierarchical Machine Learning for Information Networks
信息网络的分层机器学习
  • 批准号:
    RGPIN-2018-05938
  • 财政年份:
    2021
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Hierarchical Machine Learning for Information Networks
信息网络的分层机器学习
  • 批准号:
    RGPIN-2018-05938
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Hierarchical Machine Learning for Information Networks
信息网络的分层机器学习
  • 批准号:
    RGPIN-2018-05938
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Hierarchical Machine Learning for Information Networks
信息网络的分层机器学习
  • 批准号:
    522721-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Reinforcement Learning for Sports Analytics****
体育分析的强化学习****
  • 批准号:
    521357-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Strategic Projects - Group
Hierarchical Machine Learning for Information Networks
信息网络的分层机器学习
  • 批准号:
    522721-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Learning Bayes Nets for Relational Data and Heterogenous Networks
学习关系数据和异构网络的贝叶斯网络
  • 批准号:
    217331-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling hockey player and team performance
为曲棍球运动员和球队表现建模
  • 批准号:
    499342-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Engage Plus Grants Program
Hockey player tracking and analytics
曲棍球运动员跟踪和分析
  • 批准号:
    504787-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Engage Grants Program

相似国自然基金

物理-机器学习混合驱动的锂离子电池老化分层动态建模方法研究
  • 批准号:
    52307234
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向PTE早期诊断与危险分层的风险预测研究:基于环境、人口、表型多模态大数据的机器学习集群模型
  • 批准号:
    82241051
  • 批准年份:
    2022
  • 资助金额:
    60.00 万元
  • 项目类别:
    专项项目
基于特征建模与分层强化学习的飞行机器人控制方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于特征建模与分层强化学习的飞行机器人控制方法研究
  • 批准号:
    62273122
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
基于机器学习的碳纤维树脂基复合材料分层损伤定量化监测理论与方法
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    260 万元
  • 项目类别:
    联合基金项目

相似海外基金

Excellence in Research: A Hierarchical Machine Learning Approach for Securing of NoC-Based MPSoCs Against Thermal Attacks
卓越的研究:用于保护基于 NoC 的 MPSoC 免受热攻击的分层机器学习方法
  • 批准号:
    2302537
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
Project 3: From Networks and Structures to Hierarchical Whole­ Cell Models of Cancer
项目 3:从网络和结构到癌症的分层全细胞模型
  • 批准号:
    10704611
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
Machine learning augmented hierarchical tomographic image reconstruction of human organs
机器学习增强人体器官分层断层图像重建
  • 批准号:
    2720289
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Studentship
Hierarchical Machine Learning for Information Networks
信息网络的分层机器学习
  • 批准号:
    RGPIN-2018-05938
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Hierarchical Distributed Machine Learning
分层分布式机器学习
  • 批准号:
    580546-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了