Log Intelligence: Systematically Leveraging Logs Using Development Knowledge

日志智能:利用开发知识系统地利用日志

基本信息

  • 批准号:
    RGPIN-2016-06701
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Logs are generated at run-time by logging statements that are deliberately added into the source code by developers. Logs generated during the execution play an essential role in field debugging and support activities of large software systems. Such logs are not only for the convenience of developers and operators, but have already become part of legal requirements (e.g., the Sarbanes-Oxley Act of 2002). In recent years, many companies (e.g., IBM, BlackBerry and Microsoft) have started leveraging the rich knowledge in logs to support the development and operation of their large software systems. The broad usage of logs lead to the emergence of a new market for log analysis platforms (e.g., Splunk, XpoLog, and Logstash), which support collecting, storing, searching, and analyzing the large amounts of log data.****Although logs are widely used in practice, and their importance has been well-identified in prior software engineering research, logs are maintained and analyzed in an ad hoc manner. First of all, log maintenance (e.g, ., when to update a log) often depends on the gut feelings of developers. All too often, logs are too verbose or are at the wrong spots. Making it worse, developers often change logging statements without considering the needs of other stakeholders. Second, current storage and analysis techniques for logs remain very ad hoc, even with existing log maintenance and analysis platforms. Logs are typically stored as textual files. Most common analysis on logs is performed by un-scalable scripting languages and basic regular expressions. Third, log analysis techniques rarely make use of the rich run-time and development knowledge associated with the logging statements. For example, a typical log analysis is searching through logs using basic keywords like “error”. Such an basic approach is very error-prone and fails to truly leverage the enormous potential of logs. Such challenges are also highlighted by the researchers and practitioners (from Spunk and Google) who have extensive experiences in maintaining and analyzing logs.****The aim of the proposed research is to address the aforementioned limitations of the practices of leveraging logs. To improve the practice of log maintenance, I plan to design a framework for the systematic and automated guidance of log maintenance. To support the systematic log analysis, I plan to create a general analytical infrastructure for logs. Large-scale empirical studies will be performed on large open source and industrial systems, to understand the benefits and limitations of our work. The research outcomes will advance the practice of software developers and operators who depend on logs to ensure the quality of large software systems that serve millions of users worldwide. Furthermore, the proposed research will expose, train and enable five highly qualified personnel (HQP) to contribute to the state-of-the-art in software engineering research.**
日志是在运行时由开发人员故意添加到源代码中的日志语句生成的。在执行过程中生成的日志在大型软件系统的现场调试和支持活动中起着至关重要的作用。这样的日志不仅是为了方便开发商和运营商,而且已经成为法律要求的一部分(例如,2002年的萨班斯-奥克斯利法案)。近年来,许多公司(例如IBM、BlackBerry和Microsoft)已经开始利用日志中的丰富知识来支持其大型软件系统的开发和操作。日志的广泛使用导致了日志分析平台(例如Splunk、XpoLog和Logstash)的新市场的出现,这些平台支持收集、存储、搜索和分析大量的日志数据。****尽管日志在实践中被广泛使用,并且在以前的软件工程研究中已经很好地确定了它们的重要性,但是日志是以一种特殊的方式维护和分析的。首先,日志维护(例如:(何时更新日志)通常取决于开发人员的直觉。通常情况下,日志过于冗长或位于错误的位置。更糟糕的是,开发人员经常在不考虑其他涉众需求的情况下更改日志记录语句。其次,当前的日志存储和分析技术仍然非常特别,即使使用现有的日志维护和分析平台也是如此。日志通常以文本文件的形式存储。大多数常见的日志分析是由不可伸缩的脚本语言和基本正则表达式执行的。第三,日志分析技术很少利用与日志记录语句相关的丰富的运行时和开发知识。例如,典型的日志分析是使用“error”等基本关键字搜索日志。这种基本方法非常容易出错,并且无法真正利用日志的巨大潜力。在维护和分析日志方面具有丰富经验的研究人员和实践者(来自Spunk和谷歌)也强调了这些挑战。****建议研究的目的是解决利用日志的实践的上述限制。为了完善日志维护实践,我计划设计一个日志维护系统化、自动化指导的框架。为了支持系统的日志分析,我计划为日志创建一个通用的分析基础设施。大规模的实证研究将在大型开源和工业系统上进行,以了解我们工作的好处和局限性。研究结果将推动软件开发人员和操作人员的实践,他们依赖日志来确保为全球数百万用户服务的大型软件系统的质量。此外,拟议的研究将暴露、培训和使五名高素质人员(HQP)为软件工程研究的最新技术做出贡献。**

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shang, Weiyi其他文献

An empirical study on inconsistent changes to code clones at the release level
  • DOI:
    10.1016/j.scico.2010.11.010
  • 发表时间:
    2012-06-01
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Bettenburg, Nicolas;Shang, Weiyi;Hassan, Ahmed E.
  • 通讯作者:
    Hassan, Ahmed E.
Topic-based software defect explanation
  • DOI:
    10.1016/j.jss.2016.05.015
  • 发表时间:
    2017-07-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Chen, Tse-Hsun;Shang, Weiyi;Thomas, Stephen W.
  • 通讯作者:
    Thomas, Stephen W.
PerfJIT: Test-Level Just-in-Time Prediction for Performance Regression Introducing Commits

Shang, Weiyi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shang, Weiyi', 18)}}的其他基金

DevOps Driven Software Performance Assurance for Large-scale Software Systems
DevOps 驱动的大型软件系统的软件性能保证
  • 批准号:
    RGPIN-2021-03483
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Proactive Software Performance Assurance in ERA
ERA 中的主动软件性能保证
  • 批准号:
    566177-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Alliance Grants
DevOps Driven Software Performance Assurance for Large-scale Software Systems
DevOps 驱动的大型软件系统的软件性能保证
  • 批准号:
    RGPIN-2021-03483
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Automated software vulnerability detection by leveraging open source knowledge
利用开源知识自动检测软件漏洞
  • 批准号:
    564717-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Alliance Grants
Improving the quality and efficiency of ERA's systems
提高 ERA 系统的质量和效率
  • 批准号:
    517460-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Collaborative Research and Development Grants
Log Intelligence: Systematically Leveraging Logs Using Development Knowledge
日志智能:利用开发知识系统地利用日志
  • 批准号:
    RGPIN-2016-06701
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Improving the quality and efficiency of ERA's systems
提高 ERA 系统的质量和效率
  • 批准号:
    517460-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Collaborative Research and Development Grants
Log Intelligence: Systematically Leveraging Logs Using Development Knowledge
日志智能:利用开发知识系统地利用日志
  • 批准号:
    RGPIN-2016-06701
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Proactive performance assurance in Mobeewave****
Mobeewave 中的主动性能保证****
  • 批准号:
    534036-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Engage Grants Program
Improving the quality and efficiency of ERA's systems
提高 ERA 系统的质量和效率
  • 批准号:
    517460-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Collaborative Research and Development Grants

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    EU-Funded
University of West London and Turing Intelligence Technology Limited KTP (23-24 R3)
西伦敦大学与图灵智能科技有限公司KTP (23-24 R3)
  • 批准号:
    10082602
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Knowledge Transfer Network
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Projects
Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
  • 批准号:
    DP240100506
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Projects
Mathematical Foundations of Intelligence: An "Erlangen Programme" for AI
智能的数学基础:人工智能的“埃尔兰根计划”
  • 批准号:
    EP/Y028872/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Research Grant
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Fellowship
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Continuing Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了