Advancing complex models in small area estimation and spatial statistics
推进小区域估计和空间统计中的复杂模型
基本信息
- 批准号:RGPIN-2016-06046
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In survey sampling, policy decisions regarding allocation of resources to subgroups in a population, called small areas, are based on reliable predictors of their underlying parameters that describe resource use. However, the information is collected at a different scale than these subgroups. Hence we need to predict characteristics of the subgroups based on the coarser scale data. I plan to develop a frequentist approach for small area estimation of quantiles of Normal and non--Normal responses (e.g., median family income of small areas as Normal response). I am also interested in developing/extending my previous work in the linear mixed model (LMM) with the covariates subject to structural and functional measurement errors to non-Normal responses (e.g., binary or count response) using both frequentist and Bayesian approaches (will led by my first PhD student). My other project is to relax the linear regression assumption for the covariates of the LMM and replace them by a weaker assumption of a spline regression for the covariates subject to measurement errors (will led by my first MSc student). My plan is also to study non-ignorable missing responses and measurement errors in covariates for Normal and non-Normal responses (will led by my second PhD student).***In spatial statistics, I am pursuing research on the analysis of disease outcomes over space and time which falls under the umbrella of generalized additive mixed models. Spatio-temporal models are mainly used in disease mapping to provide a reliable estimate of the underlying disease risk by borrowing strength from neighbouring geographic sub-regions. One of my interests is to offer a frequentist approach based on maximum likelihood estimation (MLE) for complex spatio-temporal models of point-referenced datasets (also called geostatistics). In my previous work to account for seasonal effects in spatio--temporal models, I used generalized estimating equation (GEE) as an estimation approach assuming the independence structure for variance--covariance of outcome among regions which may lead to misspecification in some settings. My plan is to offer an alternative frequentist approach based on MLE to overcome this issue. My interest is also to develop mixtures of two (or more) spatial or spatio-temporal models, e.g. healthy and non-healthy populations, for disease mapping. Another project is to develop spatio-temporal for count data which may contain excess zeros because of immunity or other protective factors (will led by my second MSc student). I am also interested in working with spatial and spatio--temporal models with measurement errors (structural and functional) in covariates (will led by my third MSc student).***Ignoring proper modelling (based on the methods/models proposed above) may lead to wrong conclusions which can have clear policy implications in survey sampling and public health. *** *** *** **
在调查抽样中,有关向人口中的子群体(称为小区域)分配资源的政策决策是基于描述资源使用的基本参数的可靠预测因素。然而,信息收集的规模与这些亚组不同。因此,我们需要根据较粗尺度的数据来预测子组的特征。我计划开发一种频率论方法,用于对正常和非正常响应的分位数进行小区域估计(例如,将小区域的家庭收入中位数作为正常响应)。我也有兴趣使用频率论和贝叶斯方法(将由我的第一个博士生领导)开发/扩展我之前在线性混合模型(LMM)中的工作,其中协变量受到结构和功能测量误差的影响,对非正态响应(例如二元或计数响应)进行处理。我的另一个项目是放宽 LMM 协变量的线性回归假设,并将其替换为受测量误差影响的协变量样条回归的较弱假设(将由我的第一个理学硕士学生领导)。我的计划还包括研究正常和非正常反应的协变量中不可忽略的缺失反应和测量误差(将由我的第二个博士生领导)。***在空间统计学中,我正在研究空间和时间上疾病结果的分析,这属于广义加性混合模型的范畴。时空模型主要用于疾病绘图,通过借鉴邻近地理分区的力量,提供对潜在疾病风险的可靠估计。我的兴趣之一是为点引用数据集(也称为地质统计学)的复杂时空模型提供一种基于最大似然估计 (MLE) 的频率论方法。在我之前的工作中,为了解释时空模型中的季节性影响,我使用广义估计方程(GEE)作为估计方法,假设方差(区域之间结果的协方差)的独立结构,这可能会导致在某些情况下出现错误指定。我的计划是提供一种基于 MLE 的替代频率论方法来克服这个问题。我的兴趣还在于开发两个(或多个)空间或时空模型的混合,例如健康和非健康人群,用于疾病绘图。另一个项目是开发计数数据的时空,由于免疫或其他保护因素,这些数据可能包含多余的零(将由我的第二个理学硕士学生领导)。我还对协变量中具有测量误差(结构和功能)的空间和时空模型感兴趣(将由我的第三位理学硕士学生领导)。***忽略正确的建模(基于上面提出的方法/模型)可能会导致错误的结论,这可能对调查抽样和公共卫生产生明确的政策影响。 *** *** *** **
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Torabi, Mahmoud其他文献
Spatial modeling of individual-level infectious disease transmission: Tuberculosis data in Manitoba, Canada
- DOI:
10.1002/sim.8863 - 发表时间:
2021-01-20 - 期刊:
- 影响因子:2
- 作者:
Amiri, Leila;Torabi, Mahmoud;Pickles, Michael - 通讯作者:
Pickles, Michael
Geographical Variation and Factors Associated With Inflammatory Bowel Disease in a Central Canadian Province
- DOI:
10.1093/ibd/izz168 - 发表时间:
2020-04-01 - 期刊:
- 影响因子:4.9
- 作者:
Torabi, Mahmoud;Bernstein, Charles N.;Singh, Harminder - 通讯作者:
Singh, Harminder
A discrete-time susceptible-infectious-recovered-susceptible model for the analysis of influenza data.
- DOI:
10.1016/j.idm.2023.04.008 - 发表时间:
2023-06 - 期刊:
- 影响因子:8.8
- 作者:
Bucyibaruta, Georges;Dean, C. B.;Torabi, Mahmoud - 通讯作者:
Torabi, Mahmoud
Analyzing COVID-19 data in the Canadian province of Manitoba: A new approach.
分析加拿大曼尼托巴省的COVID-19数据:一种新方法。
- DOI:
10.1016/j.spasta.2023.100729 - 发表时间:
2023-06 - 期刊:
- 影响因子:2.3
- 作者:
Amiri, Leila;Torabi, Mahmoud;Deardon, Rob - 通讯作者:
Deardon, Rob
Hierarchical Bayesian Spatiotemporal Analysis of Childhood Cancer Trends
- DOI:
10.1111/j.1538-4632.2012.00839.x - 发表时间:
2012-04-01 - 期刊:
- 影响因子:3.6
- 作者:
Torabi, Mahmoud;Rosychuk, Rhonda J. - 通讯作者:
Rosychuk, Rhonda J.
Torabi, Mahmoud的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Torabi, Mahmoud', 18)}}的其他基金
Advancing Statistical Models for Complex and Correlated Data
推进复杂且相关数据的统计模型
- 批准号:
RGPIN-2021-03353 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Advancing Statistical Models for Complex and Correlated Data
推进复杂且相关数据的统计模型
- 批准号:
RGPIN-2021-03353 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Advancing complex models in small area estimation and spatial statistics
推进小区域估计和空间统计中的复杂模型
- 批准号:
RGPIN-2016-06046 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Modeling of COVID-19 Pandemic in Canada: Projection and Interventions
加拿大 COVID-19 大流行的建模:预测和干预措施
- 批准号:
554825-2020 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Alliance Grants
Advancing complex models in small area estimation and spatial statistics
推进小区域估计和空间统计中的复杂模型
- 批准号:
RGPIN-2016-06046 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Advancing complex models in small area estimation and spatial statistics
推进小区域估计和空间统计中的复杂模型
- 批准号:
RGPIN-2016-06046 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Advancing complex models in small area estimation and spatial statistics
推进小区域估计和空间统计中的复杂模型
- 批准号:
RGPIN-2016-06046 - 财政年份:2016
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Small area estimation, and spatial statistics
小区域估计和空间统计
- 批准号:
402503-2011 - 财政年份:2015
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Small area estimation, and spatial statistics
小区域估计和空间统计
- 批准号:
402503-2011 - 财政年份:2014
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Small area estimation, and spatial statistics
小区域估计和空间统计
- 批准号:
402503-2011 - 财政年份:2013
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
TPLATE Complex通过胞吞调控CLV3-CLAVATA多肽信号模块维持干细胞稳态的分子机制研究
- 批准号:32370337
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
二甲双胍对于模型蛋白、γ-secretase、Complex I自由能曲面的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高脂饮食损伤巨噬细胞ndufs4表达激活Complex I/mROS/HIF-1通路参与溃疡性结肠炎研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用新型 pH 荧光探针研究 Syntaxin 12/13 介导的多种细胞器互作
- 批准号:92054103
- 批准年份:2020
- 资助金额:87.0 万元
- 项目类别:重大研究计划
S-棕榈酰化新型修饰在细胞自噬中的功能和机制研究
- 批准号:31970693
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
核孔复合体调控细胞核/叶绿体信号交流分子机制的研究
- 批准号:31970656
- 批准年份:2019
- 资助金额:52.0 万元
- 项目类别:面上项目
m6A甲基化酶ZCCHC4结合EIF3复合物调节翻译的机制研究
- 批准号:31971330
- 批准年份:2019
- 资助金额:62.0 万元
- 项目类别:面上项目
线粒体参与呼吸中枢pre-Bötzinger complex呼吸可塑性调控的机制研究
- 批准号:31971055
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
北温带中华蹄盖蕨复合体Athyrium sinense complex的物种分化
- 批准号:31872651
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
细胞不对称分裂时PAR-3/PAR-6复合物极性聚集的分子机制研究
- 批准号:31871394
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Advancing the functional maturity of brain organoids by synthetic afferentation.
通过合成传入促进大脑类器官的功能成熟。
- 批准号:
10811090 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Creating an sxRNA Organoid Product for Advancing the Study, Prevention and Treatment of Alzheimer's disease (AD) and Alzheimer's-disease-related dementias (ADRD)
创建 sxRNA 类器官产品以推进阿尔茨海默病 (AD) 和阿尔茨海默病相关痴呆 (ADRD) 的研究、预防和治疗
- 批准号:
10765970 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Advancing Sustainability of Evidence-Based Treatments in Community Mental Health
促进社区心理健康循证治疗的可持续性
- 批准号:
10535362 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Advancing measurement and scoring methods for testing mediation models of substance use
改进用于测试物质使用中介模型的测量和评分方法
- 批准号:
10614916 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Advancing Computational Linguistic Biomarkers of Disorganized Speech in Psychosis
推进精神病言语混乱的计算语言生物标志物
- 批准号:
10686264 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Advancing measurement and scoring methods for testing mediation models of substance use
改进用于测试物质使用中介模型的测量和评分方法
- 批准号:
10235678 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Advancing Statistical Models for Complex and Correlated Data
推进复杂且相关数据的统计模型
- 批准号:
RGPIN-2021-03353 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Advancing Mathematical Models and Algorithms for Decentralized Optimization in Complex Multi-agent Networks
职业:推进复杂多智能体网络中分散优化的数学模型和算法
- 批准号:
2323159 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Advancing Computational Linguistic Biomarkers of Disorganized Speech in Psychosis
推进精神病言语混乱的计算语言生物标志物
- 批准号:
10507015 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Advancing Bio-Realistic Modeling via the Brain Modeling ToolKit and SONATA Data Format
通过大脑建模工具包和 SONATA 数据格式推进生物真实建模
- 批准号:
10306896 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:














{{item.name}}会员




