Advanced Modeling of Human Movement for Computer Animation

计算机动画人体运动的高级建模

基本信息

  • 批准号:
    RGPIN-2018-06797
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Computer animation has influenced the world not only through Hollywood blockbuster CG (Computer Graphics) movies and video games, but also via virtual reality applications that train engineers and doctors with virtual tools in simulated environments. Despite the huge success of computer animation in general, 3D Character Animation still relies mostly on motion capture and thus remains labor-intensive and costly. The making of Avatar took dozens of visual effects companies and thousands of digital artists years on performance capture of real human actors, and manual editing of the captured animations afterwards if any changes are needed. We deem character animation the current bottleneck of computer graphics and creative content creation. ******I propose to model human movement with a holistic approach to firstly deepen our understanding of human motion, and secondly enable CG professionals and novice users alike to create richer and more-realistic human motions with ease. For instance, given a 5-minute motion capture data of human movement, can we automatically equip a digital avatar to move about and accomplish tasks with all the skills seen in the data? To achieve this overall goal, we propose three specific short-term objectives: (1) deeply analyze and understand motion capture datasets, (2) learn control models at individual skill-level at interactive rates, and (3) develop a skill manager to equip digital avatars with human-level motion intelligence. I plan to develop novel algorithms that combine model-based control methods with recent deep-learning based model-free approaches. I also intend to investigate multiple learning methods. It is not obvious how deep learning can transform problem solving in computer animation in general, compared to what happened in computer vision, as there are significant differences between the two fields. I wish to contribute to answering this question with my research for the five years to come.******Modeling of human movement is a fundamental problem in computer animation, computer vision, biomechanics, and humanoid robotics. Therefore, many non-CG applications can benefit from advanced modeling of human movement as well, such as activity recognition in video surveillance, diagnosis and rehabilitation of injured patients, and humanoid robot control and interaction. Thus although studied in a computer animation context, we expect much broader scientific impact of this research in computer science, engineering, and medical disciplines. The results of this research are directly transferable to animation tools and systems for movie, game, and VR industries. We thus also expect economic impact from the proposed research. In addition, this research will likely generate social impacts as well, as it will enable non-experts to create animation content in easy and intuitive ways as we shoot photos and videos today.
计算机动画不仅通过好莱坞大片 CG(计算机图形)电影和视频游戏影响着世界,还通过虚拟现实应用程序在模拟环境中使用虚拟工具培训工程师和医生。尽管计算机动画总体上取得了巨大成功,但 3D 角色动画仍然主要依赖于动作捕捉,因此仍然是劳动密集型且成本高昂。 《阿凡达》的制作花费了数十家视觉效果公司和数千名数字艺术家数年的时间来捕捉真人演员的表演,并在事后对捕捉到的动画进行手动编辑(如果需要任何更改)。我们认为角色动画是当前计算机图形学和创意内容创作的瓶颈。 ******我建议用整体方法对人体运动进行建模,首先加深我们对人体运动的理解,其次使 CG 专业人士和新手用户能够轻松创建更丰富、更真实的人体运动。例如,给定一个 5 分钟的人体运动动作捕捉数据,我们能否自动装备一个数字化身,利用数据中看到的所有技能来移动并完成任务?为了实现这一总体目标,我们提出了三个具体的短期目标:(1)深入分析和理解动作捕捉数据集,(2)以交互速率学习个人技能水平的控制模型,以及(3)开发技能管理器,为数字化身配备人类水平的运动智能。我计划开发新颖的算法,将基于模型的控制方法与最近基于深度学习的无模型方法相结合。我还打算研究多种学习方法。与计算机视觉中发生的情况相比,深度学习如何改变一般计算机动画中的问题解决尚不明显,因为这两个领域之间存在显着差异。我希望在未来五年的研究中为回答这个问题做出贡献。******人体运动建模是计算机动画、计算机视觉、生物力学和人形机器人技术中的一个基本问题。因此,许多非 CG 应用也可以受益于人类运动的高级建模,例如视频监控中的活动识别、受伤患者的诊断和康复以及人形机器人控制和交互。因此,尽管是在计算机动画背景下进行研究,但我们预计这项研究会对计算机科学、工程和医学学科产生更广泛的科学影响。这项研究的成果可直接应用于电影、游戏和 VR 行业的动画工具和系统。因此,我们还预计拟议研究会产生经济影响。此外,这项研究也可能会产生社会影响,因为它将使非专家能够像我们今天拍摄照片和视频一样以简单直观的方式创建动画内容。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yin, KangKang其他文献

Yin, KangKang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yin, KangKang', 18)}}的其他基金

Advanced Modeling of Human Movement for Computer Animation
计算机动画人体运动的高级建模
  • 批准号:
    RGPIN-2018-06797
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Modeling of Human Movement for Computer Animation
计算机动画人体运动的高级建模
  • 批准号:
    RGPIN-2018-06797
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Modeling of Human Movement for Computer Animation
计算机动画人体运动的高级建模
  • 批准号:
    RGPIN-2018-06797
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Modeling of Human Movement for Computer Animation
计算机动画人体运动的高级建模
  • 批准号:
    522723-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER:HCC: Using Virtual Reality Gaming to Develop a Predictive Simulation of Human-Building Interactions: Behavioral and Emotional Modeling for Public Space Design
职业:HCC:使用虚拟现实游戏开发人类建筑交互的预测模拟:公共空间设计的行为和情感建模
  • 批准号:
    2339999
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Continuing Grant
A human-centered modeling approach to simulate best management practices and behaviors under uncertainty to meet water quality guidelines
以人为本的建模方法,用于模拟不确定情况下的最佳管理实践和行为,以满足水质准则
  • 批准号:
    2342309
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
CAREER: An Integrated Trustworthy AI Research and Education Framework for Modeling Human Behavior in Climate Disasters
职业生涯:用于模拟气候灾害中人类行为的综合可信人工智能研究和教育框架
  • 批准号:
    2338959
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
NSF-JST: An Inclusive Human-Centered Risk Management Modeling Framework for Flood Resilience
NSF-JST:以人为本的包容性防洪风险管理模型框架
  • 批准号:
    2342842
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
CRCNS Research Proposal: Modeling traveling waves in the human cortex
CRCNS 研究提案:模拟人类皮层中的行波
  • 批准号:
    2309174
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Continuing Grant
Collaborative Research: RAPID: Rapid computational modeling of wildfires and management with emphasis on human activity
合作研究:RAPID:野火和管理的快速计算建模,重点关注人类活动
  • 批准号:
    2345256
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
A modeling approach for accurately predicting land use changes brought by human decisions
准确预测人类决策带来的土地利用变化的建模方法
  • 批准号:
    22KJ1856
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
PBPK Modeling & Simulation to Predict Transporter-Mediated Drug Secretion into Human Breast Milk
PBPK 建模
  • 批准号:
    10706040
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
Modeling and Mapping Human Action Regulation Networks
人类行为调节网络的建模和映射
  • 批准号:
    10712708
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
Deconvoluting the Ewing sarcoma genetic program using ancestry-informed human iPSC modeling
使用基于血统的人类 iPSC 模型对尤文肉瘤遗传程序进行解卷积
  • 批准号:
    10562800
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了