Towards Generalized Natural Language Generation with Distributional Semantics

使用分布式语义生成广义自然语言

基本信息

  • 批准号:
    RGPIN-2015-05380
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

From smartphones to smart cars, robotic assistants and beyond, the common goal of many emerging technologies is to extract useful information about the world in order to give users greater control over their surroundings. The field of natural language processing provides techniques to extract meaning from text, reason with it, and finally produce text and speech in order to relay information back to the user.***Recent successes in personal assistant applications and news summarization systems have raised the demand for natural language generation (NLG) systems that can interactively produce feedback to the user. Yet many existing methods only work well on highly restricted domains and tasks, as typified by a GPS navigation system with pre-programmed templates for generating driving directions.***My research program aims to produce a generalized computational account of NLG that is sensitive to differences in the topics, language types, and goals of an application. This will require an analysis of the parameter space of NLG systems in order to characterize their diversity, as well as a correspondingly adaptive and expressive semantics that can support the reasoning and inferences that are necessary for NLG.***For the former requirement, my research group will develop techniques for NLG that take into account the desired usage of the system in its broader context. For example, a news text summarization system might emphasize factors such as brevity and formality, whereas an interactive educational game might emphasize other factors such as simplicity and interest.***For the latter requirement, my research program will investigate distributional semantics (DS), a data-driven approach to modelling meaning that can be trained without human annotation effort. My research will focus on using DS to model the meaning of entities such as Quebec or Android, as well as events such as the Olympic Games of 2016, which is required in order to reason about the important information that should be expressed by NLG.***The impact of this research will be to move NLG from being confined to highly restricted and domain-specific scenarios to being integrated with interactive systems in a natural and pervasive manner. The tools, techniques, and framework contributed by this research program will demonstrate that NLG systems that are supported by expressive, data-driven semantics can be developed and tailored for education, entertainment, or business.
从智能手机到智能汽车、机器人助手等,许多新兴技术的共同目标是提取有关世界的有用信息,以便让用户更好地控制周围环境。自然语言处理领域提供了从文本中提取含义的技术,推理,并最终产生文本和语音,以便将信息传递回用户。最近在个人助理应用和新闻摘要系统中的成功提高了对能够交互地向用户产生反馈的自然语言生成(NLG)系统的需求。然而,许多现有的方法只适用于高度受限的领域和任务,例如具有用于生成驾驶方向的预编程模板的GPS导航系统。我的研究计划旨在产生一个广义的计算帐户NLG是敏感的主题,语言类型和目标的应用程序的差异。这将需要分析NLG系统的参数空间,以表征其多样性,以及相应的自适应和表达语义,以支持NLG所需的推理和推断。对于前一个要求,我的研究小组将开发NLG的技术,考虑到系统在更广泛的背景下的预期用途。例如,新闻文本摘要系统可能会强调简洁和正式等因素,而交互式教育游戏可能会强调简单和有趣等其他因素。对于后一个要求,我的研究计划将研究分布式语义(DS),这是一种数据驱动的建模方法,可以在没有人工注释的情况下进行训练。我的研究将集中在使用DS来建模实体的含义,如魁北克或Android,以及事件,如2016年奥运会,这是为了推理NLG应该表达的重要信息所必需的。这项研究的影响将是移动NLG从被限制在高度受限和特定领域的情况下被集成到一个自然和普遍的方式与交互式系统。该研究计划提供的工具,技术和框架将证明,由表达性,数据驱动的语义支持的NLG系统可以为教育,娱乐或商业开发和定制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cheung, Jackie其他文献

Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation.
  • DOI:
    10.1038/ncomms6864
  • 发表时间:
    2014-12-23
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Progatzky, Fraenze;Sangha, Navjyot J.;Yoshida, Nagisa;McBrien, Marie;Cheung, Jackie;Shia, Alice;Scott, James;Marchesi, Julian R.;Lamb, Jonathan R.;Bugeon, Laurence;Dallman, Margaret J.
  • 通讯作者:
    Dallman, Margaret J.

Cheung, Jackie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cheung, Jackie', 18)}}的其他基金

Enabling Common Sense Reasoning in Natural Language Processing Systems
在自然语言处理系统中实现常识推理
  • 批准号:
    RGPIN-2020-04871
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling Common Sense Reasoning in Natural Language Processing Systems
在自然语言处理系统中实现常识推理
  • 批准号:
    RGPIN-2020-04871
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling Common Sense Reasoning in Natural Language Processing Systems
在自然语言处理系统中实现常识推理
  • 批准号:
    RGPIN-2020-04871
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Common Sense Reasoning as Alternative Scenario Search
常识推理作为替代场景搜索
  • 批准号:
    519933-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Engage Plus Grants Program
Towards Generalized Natural Language Generation with Distributional Semantics
使用分布式语义生成广义自然语言
  • 批准号:
    RGPIN-2015-05380
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Generalized Natural Language Generation with Distributional Semantics
使用分布式语义生成广义自然语言
  • 批准号:
    RGPIN-2015-05380
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Frame Semantics with Deep Neural Networks for the Winograd Schema Challenge
使用深度神经网络学习框架语义应对 Winograd 模式挑战
  • 批准号:
    502340-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Engage Grants Program
Towards Generalized Natural Language Generation with Distributional Semantics
使用分布式语义生成广义自然语言
  • 批准号:
    RGPIN-2015-05380
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Generalized Natural Language Generation with Distributional Semantics
使用分布式语义生成广义自然语言
  • 批准号:
    RGPIN-2015-05380
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Distributional Semantics Over Semi-structured Data
半结构化数据的分布语义
  • 批准号:
    488743-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Engage Grants Program

相似国自然基金

三维流形的Generalized Seifert Fiber分解
  • 批准号:
    11526046
  • 批准年份:
    2015
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Generalized deep unfoldingの提案と曖昧なドメイン知識モデリングへの応用
广义深度展开的提出及其在模糊领域知识建模中的应用
  • 批准号:
    24K03010
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Unique continuation and the regularity of elliptic PDEs and generalized minimal submanifolds
椭圆偏微分方程和广义最小子流形的唯一延拓和正则性
  • 批准号:
    2350351
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Near Lossless Dense Light Field Compression Using Generalized Neural Radiance Field
使用广义神经辐射场的近无损密集光场压缩
  • 批准号:
    24K20797
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Diagonal Grobner Geometry of Generalized Determinantal Varieties
广义行列式簇的对角格罗布纳几何
  • 批准号:
    2344764
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Efficient Computation of Generalized Persistence Diagrams
广义持久图的高效计算
  • 批准号:
    2324632
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Continuing Grant
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
  • 批准号:
    EP/X01276X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Fellowship
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
  • 批准号:
    23K03139
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generalized prediction errors in the human cerebellum
人类小脑的广义预测误差
  • 批准号:
    10715334
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Generalized Stochastic Nash Equilibrium Framework: Theory, Computation, and Application
广义随机纳什均衡框架:理论、计算和应用
  • 批准号:
    2231863
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Testing generalized space-time geometry with multimessenger observations of gravitation al waves
用引力波的多信使观测测试广义时空几何
  • 批准号:
    22KF0085
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了