Advanced Dynamic Load Modeling for Modern Smart Grids
现代智能电网的高级动态负载建模
基本信息
- 批准号:RGPIN-2016-04170
- 负责人:
- 金额:$ 1.64万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Power system planning, operation, and control rely heavily on simulation models. Among all component modeling, load representation remains among the least accurate due to a large number of diverse loads in the system and their time variant stochastic nature. New non-conventional power electronics loads and intermittent distributed generation add more complication and challenge to accurate load modeling. An accurate dynamic load model is very important for power system stability. Despite load modeling research efforts in past decades, a worldwide survey published in 2013 indicated the following major issues, which could hinder proper design and operation of the modern power grid. About 70% of 97 surveyed utilities and system operators around the world use only static load models for power system stability studies. Only 40% of utilities have updated their load model parameters within the last five years. About 40% of utilities do not consider distributed generation at all when modeling demand at the bulk load supply point, and further 28% of utilities simply model distributed generation as a negative load in system studies.*** The proposed research program aims to tackle these challenging issues by creating innovative new dynamic load modeling approaches in a modern smart grid environment. The long term goal of the research is to create a family of advanced and practical technologies for improved dynamic load model development and validation. To achieve this goal, the research program will be carried out in the following three interrelated areas: 1) new techniques to create accurate dynamic load models; 2) better methods to update load model parameters for off-line and real-time on-line applications; and 3) novel techniques to integrate distributed generation in load modeling. Successful development of these techniques will lead to a significantly improved approach to achieve more accurate dynamic load modeling. Aligning with the long-term goal, the short term objectives over a five year time-frame will be concentrated on the two interrelated themes: 1) dynamic load modeling using an artificial intelligent-based machine learning method and synchrophasor data; and 2) integration of renewable energy sources in dynamic load modeling. *** By investigating dynamic load modeling techniques using synchrophasor data, the most effective and best practical approaches will be obtained. An effective and intelligent load modeling tool for utilities will be developed. The research on integration of renewable energy sources in load modeling will improve planning and integration of renewable energy generation, and enhance the overall accuracy of power system simulation. The research will benefit Canadian utilities, and lead to significant advances in the load modeling field. **
电力系统的规划、运行和控制在很大程度上依赖于仿真模型。在所有的组件建模,负载表示仍然是最不准确的,由于大量的不同负载的系统和它们的时变随机性质。新型非常规电力电子负荷和间歇性分布式发电给准确的负荷建模增加了更多的复杂性和挑战。准确的动态负荷模型对电力系统的稳定性至关重要。尽管在过去几十年中进行了负荷建模研究,但2013年发布的一项全球调查表明,以下主要问题可能会阻碍现代电网的正确设计和运行。在全球97家接受调查的电力公司和系统运营商中,约有70%的公司仅使用静态负荷模型进行电力系统稳定性研究。在过去五年中,只有40%的公用事业公司更新了其负荷模型参数。大约40%的公用事业公司在对大容量负荷供应点的需求建模时根本不考虑分布式发电,另外28%的公用事业公司在系统研究中简单地将分布式发电建模为负负荷。 拟议的研究计划旨在通过在现代智能电网环境中创建创新的新动态负荷建模方法来解决这些具有挑战性的问题。该研究的长期目标是创建一个先进和实用的技术,以改进动态负荷模型的开发和验证。为了实现这一目标,研究计划将在以下三个相互关联的领域进行:1)新技术,以创建准确的动态负荷模型; 2)更好的方法,以更新负荷模型参数离线和实时在线应用;和3)新技术,以集成分布式发电负荷建模。这些技术的成功开发将导致一个显着改进的方法,以实现更准确的动态负荷建模。与长期目标一致,五年内的短期目标将集中在两个相互关联的主题上:1)使用基于人工智能的机器学习方法和同步相量数据的动态负荷建模; 2)将可再生能源集成到动态负荷建模中。*** 通过研究使用同步相量数据的动态负荷建模技术,将获得最有效和最实用的方法。一个有效的和智能的负荷建模工具,公用事业将开发。研究可再生能源在负荷建模中的集成问题,将有助于提高可再生能源发电的规划和集成,提高电力系统仿真的整体精度。这项研究将有利于加拿大的公用事业,并导致在负荷建模领域的重大进展。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liang, Xiaodong其他文献
Estimating Hansen solubility parameters of organic pigments by group contribution methods
- DOI:
10.1016/j.cjche.2020.12.013 - 发表时间:
2021-03-01 - 期刊:
- 影响因子:3.8
- 作者:
Enekvist, Markus;Liang, Xiaodong;Kontogeorgis, Georgios M. - 通讯作者:
Kontogeorgis, Georgios M.
A Lung Cancer Patient Harboring a Rare Oncogenic EGFR Exon 20 V786M Mutation Responded to a Third-Generation Tyrosine Kinase Inhibitor: Case Report and Review of the Literature.
- DOI:
10.3389/fonc.2022.912426 - 发表时间:
2022 - 期刊:
- 影响因子:4.7
- 作者:
Zhu, Qi;Jiang, Mingyun;Li, Wenfei;Sun, Shuangli;Li, Jisheng;Stebbing, Justin;Liang, Xiaodong;Peng, Ling - 通讯作者:
Peng, Ling
Modeling of Asphaltene Onset Precipitation Conditions with Cubic Plus Association (CPA) and Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) Equations of State
- DOI:
10.1021/acs.energyfuels.6b00674 - 发表时间:
2016-08-01 - 期刊:
- 影响因子:5.3
- 作者:
Arya, Alay;Liang, Xiaodong;Kontogeorgis, Georgios M. - 通讯作者:
Kontogeorgis, Georgios M.
Light-powered self-excited motion of a liquid crystal elastomer rotator
- DOI:
10.1007/s11071-021-06250-4 - 发表时间:
2021-02-07 - 期刊:
- 影响因子:5.6
- 作者:
Cheng, Quanbao;Liang, Xiaodong;Li, Kai - 通讯作者:
Li, Kai
Single- and Multi-Fault Diagnosis Using Machine Learning for Variable Frequency Drive-Fed Induction Motors
- DOI:
10.1109/tia.2020.2974151 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:4.4
- 作者:
Ali, Mohammad Zawad;Shabbir, Md Nasmus Sakib Khan;Liang, Xiaodong - 通讯作者:
Liang, Xiaodong
Liang, Xiaodong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liang, Xiaodong', 18)}}的其他基金
Technology Solutions for Energy Security in Remote, Northern, and Indigenous Communities
偏远、北方和土著社区能源安全的技术解决方案
- 批准号:
CRC-2019-00419 - 财政年份:2022
- 资助金额:
$ 1.64万 - 项目类别:
Canada Research Chairs
Advanced Dynamic Load Modeling for Modern Smart Grids
现代智能电网的高级动态负载建模
- 批准号:
RGPIN-2016-04170 - 财政年份:2021
- 资助金额:
$ 1.64万 - 项目类别:
Discovery Grants Program - Individual
Technology Solutions For Energy Security In Remote, Northern, And Indigenous Communities
偏远、北方和土著社区能源安全的技术解决方案
- 批准号:
CRC-2019-00419 - 财政年份:2021
- 资助金额:
$ 1.64万 - 项目类别:
Canada Research Chairs
Electromagnetic Interference Evaluation and Mitigation between Railways and Nearby Power Lines
铁路与附近电力线之间的电磁干扰评估与缓解
- 批准号:
558330-2020 - 财政年份:2020
- 资助金额:
$ 1.64万 - 项目类别:
Alliance Grants
Advanced Dynamic Load Modeling for Modern Smart Grids
现代智能电网的高级动态负载建模
- 批准号:
RGPIN-2016-04170 - 财政年份:2020
- 资助金额:
$ 1.64万 - 项目类别:
Discovery Grants Program - Individual
Technology Solutions for Energy Security in Remote, Northern, and Indigenous Communities
偏远、北方和土著社区能源安全的技术解决方案
- 批准号:
CRC-2019-00419 - 财政年份:2020
- 资助金额:
$ 1.64万 - 项目类别:
Canada Research Chairs
Advanced Dynamic Load Modeling for Modern Smart Grids
现代智能电网的高级动态负载建模
- 批准号:
RGPIN-2016-04170 - 财政年份:2019
- 资助金额:
$ 1.64万 - 项目类别:
Discovery Grants Program - Individual
Autonomous operation of high efficiency ESP drive systems for improved oil recovery
高效 ESP 驱动系统的自主运行可提高石油采收率
- 批准号:
517822-2017 - 财政年份:2018
- 资助金额:
$ 1.64万 - 项目类别:
Collaborative Research and Development Grants
Advanced Dynamic Load Modeling for Modern Smart Grids
现代智能电网的高级动态负载建模
- 批准号:
RGPIN-2016-04170 - 财政年份:2018
- 资助金额:
$ 1.64万 - 项目类别:
Discovery Grants Program - Individual
Advanced Dynamic Load Modeling for Modern Smart Grids
现代智能电网的高级动态负载建模
- 批准号:
RGPIN-2016-04170 - 财政年份:2017
- 资助金额:
$ 1.64万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Dynamic Credit Rating with Feedback Effects
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Dynamic load carriage simulator and its applications
动载运输模拟器及其应用
- 批准号:
574250-2022 - 财政年份:2022
- 资助金额:
$ 1.64万 - 项目类别:
University Undergraduate Student Research Awards
Advanced Dynamic Load Modeling for Modern Smart Grids
现代智能电网的高级动态负载建模
- 批准号:
RGPIN-2016-04170 - 财政年份:2021
- 资助金额:
$ 1.64万 - 项目类别:
Discovery Grants Program - Individual
Development of environmental dynamic analysis model for advanced management of environmental load connecting forest-village-river-sea
开发森林-村庄-河海环境负荷高级管理的环境动态分析模型
- 批准号:
21K12321 - 财政年份:2021
- 资助金额:
$ 1.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CRCNS Research Project: Collaborative Research: Experimental, Numerical, and Robotic Study of the Role of Dynamic Load Sensing in Legged Locomotion
CRCNS 研究项目:协作研究:动态负载传感在腿式运动中的作用的实验、数值和机器人研究
- 批准号:
2113028 - 财政年份:2021
- 资助金额:
$ 1.64万 - 项目类别:
Continuing Grant
Elucidation of pre-onset signs of low back pain by dynamic load measurement and analysis using static pessure sensing IoT insole
使用静态压力传感物联网鞋垫进行动态负载测量和分析,阐明腰痛发作前的症状
- 批准号:
21K17454 - 财政年份:2021
- 资助金额:
$ 1.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of Evaluation Method for Energy Consumption Performance of VRF Air Conditioners Considering Dynamic Response to Heat Load Fluctuation
考虑热负荷波动动态响应的多联机空调能耗性能评价方法的开发
- 批准号:
21K04387 - 财政年份:2021
- 资助金额:
$ 1.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Wearable shear-wave tensiometry for tracking tendon load during dynamic movement
可穿戴剪切波张力测量仪,用于跟踪动态运动期间的肌腱负载
- 批准号:
10158240 - 财政年份:2020
- 资助金额:
$ 1.64万 - 项目类别:
Advanced Dynamic Load Modeling for Modern Smart Grids
现代智能电网的高级动态负载建模
- 批准号:
RGPIN-2016-04170 - 财政年份:2020
- 资助金额:
$ 1.64万 - 项目类别:
Discovery Grants Program - Individual
Biomechanical load sharing in the foot during dynamic, load-bearing activity
动态承重活动期间足部的生物力学负荷分配
- 批准号:
RGPIN-2016-04439 - 财政年份:2020
- 资助金额:
$ 1.64万 - 项目类别:
Discovery Grants Program - Individual
Distributed Data Management Library for Large-Scale Many-Core Clusters and its Integration with Dynamic Load Balancers
大规模众核集群的分布式数据管理库及其与动态负载均衡器的集成
- 批准号:
20K11841 - 财政年份:2020
- 资助金额:
$ 1.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)