Beyond Deep Associative learning
超越深度联想学习
基本信息
- 批准号:RGPIN-2019-04824
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mathematicians and scientists have been pursuing Artificial Intelligence (AI) for over sixty years. A significant discipline within AI is machine learning, where a system is trained through exposure to enormous amounts of data to learn new situations. Applications of machine learning are now commonplace think of personalized searches on Google or Amazon, voice recognition systems, or digital assistants such as Cortana and Siri. These applications are associational they look for consistent relationships between variables. While they are impressive, they still lack a human's ability to use prior knowledge and intuition and the ability to examine a new situation and imagine alternative outcomes. Further development of AI could plateau without a breakthrough into more human-like learning.***The goal of this proposal is to begin the process of training a machine to learn as a human child learns, thereby significantly advancing the field of AI. Humans learn through repeated exposure to similar but slightly different events. For a machine, we believe the same result can be accomplished through a new generation of deep neural networks where a machine can be trained through repeated exposure to similar but somewhat different data sets to learn and anticipate outcomes. My team and I will work towards this goal and attempt to move AI beyond associational models and towards human-like reasoning.***There are three specific ingredients which will be the focus of our research: first, we will work to train a machine with deep learning of basic physics and see if it can apply this training across a wide variety of scenarios, approaching what would be common sense in a human; second, we will attempt to train a machine in cause-and-effect relationships which should allow it to predict alternative outcomes, the way a human considers counterfactuality - the innate human ability to imagine an infinite number of what if?' scenarios; third, we will explore the possibilities of conditioning the machine to use its training outside of specific scenarios into completely new fields, the way a human can use experience and imagination when encountering new situations. There are many areas of work associated with this project and we will use two applications to illustrate the motivation driving this research and to validate our algorithms. These two applications are of significant importance by themselves and address a challenging industrial problem (autonomous vehicles) and an important and very influential bioinformatic open question (peptide sequencing).**
60多年来,数学家和科学家一直在研究人工智能(AI)。人工智能中的一个重要学科是机器学习,通过接触大量数据来训练系统以学习新情况。如今,机器学习的应用已经司空见惯,比如b谷歌或亚马逊(Amazon)上的个性化搜索、语音识别系统,或者小娜(Cortana)和Siri等数字助理。这些应用程序是关联的,它们寻找变量之间的一致关系。虽然它们令人印象深刻,但它们仍然缺乏人类使用先验知识和直觉的能力,以及检查新情况和想象替代结果的能力。如果在更像人类的学习方面没有突破,人工智能的进一步发展可能会停滞不前。这个提议的目标是开始训练机器像人类孩子一样学习的过程,从而显著推进人工智能领域。人类通过反复接触相似但略有不同的事件来学习。对于机器,我们相信同样的结果可以通过新一代的深度神经网络来实现,其中机器可以通过反复暴露于相似但有些不同的数据集来训练,以学习和预测结果。我和我的团队将朝着这个目标努力,并尝试让人工智能超越关联模型,走向类似人类的推理。***有三个具体的成分将是我们研究的重点:首先,我们将努力用基础物理的深度学习来训练机器,看看它是否可以将这种训练应用于各种各样的场景,接近人类的常识;其次,我们将尝试在因果关系方面训练机器,使其能够预测不同的结果,就像人类考虑反事实性一样——人类天生就有能力想象无数个“如果”。的场景;第三,我们将探索调节机器的可能性,使其在特定场景之外使用其训练到全新领域,就像人类在遇到新情况时可以使用经验和想象力一样。与这个项目相关的工作领域很多,我们将使用两个应用程序来说明推动这项研究的动机,并验证我们的算法。这两个应用本身都非常重要,并解决了一个具有挑战性的工业问题(自动驾驶汽车)和一个重要且非常有影响力的生物信息学开放问题(肽测序)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ghodsi, Ali其他文献
Novel mass detection based on magnetic excitation in anti-resonance region
- DOI:
10.1007/s00542-016-2885-4 - 发表时间:
2017-05-01 - 期刊:
- 影响因子:2.1
- 作者:
Jafari, Hamid;Ghodsi, Ali;Azizi, Saber - 通讯作者:
Azizi, Saber
Automatic dimensionality selection from the scree plot via the use of profile likelihood
- DOI:
10.1016/j.csda.2005.09.010 - 发表时间:
2006-11-15 - 期刊:
- 影响因子:1.8
- 作者:
Zhu, Mu;Ghodsi, Ali - 通讯作者:
Ghodsi, Ali
A conceptual study on the dynamics of a piezoelectric MEMS (Micro Electro Mechanical System) energy harvester
- DOI:
10.1016/j.energy.2015.12.014 - 发表时间:
2016-02-01 - 期刊:
- 影响因子:9
- 作者:
Azizi, Saber;Ghodsi, Ali;Ghazavi, Mohammad Reza - 通讯作者:
Ghazavi, Mohammad Reza
Controlling the Morphology of PVDF Hollow Fiber Membranes by Promotion of Liquid-Liquid Phase Separation
- DOI:
10.1002/adem.201701169 - 发表时间:
2018-07-01 - 期刊:
- 影响因子:3.6
- 作者:
Ghodsi, Ali;Fashandi, Hossein;Mirzaei, Majid - 通讯作者:
Mirzaei, Majid
Eventual Consistency Today: Limitations, Extensions, and Beyond
- DOI:
10.1145/2447976.2447992 - 发表时间:
2013-05-01 - 期刊:
- 影响因子:22.7
- 作者:
Bailis, Peter;Ghodsi, Ali - 通讯作者:
Ghodsi, Ali
Ghodsi, Ali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ghodsi, Ali', 18)}}的其他基金
Beyond Deep Associative learning
超越深度联想学习
- 批准号:
RGPIN-2019-04824 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Beyond Deep Associative learning
超越深度联想学习
- 批准号:
RGPIN-2019-04824 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Beyond Deep Associative learning
超越深度联想学习
- 批准号:
RGPIN-2019-04824 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Larg-Scale Data Analytics: Methodologies and Applications
大规模数据分析:方法和应用
- 批准号:
RGPIN-2014-05721 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Larg-Scale Data Analytics: Methodologies and Applications
大规模数据分析:方法和应用
- 批准号:
RGPIN-2014-05721 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Larg-Scale Data Analytics: Methodologies and Applications
大规模数据分析:方法和应用
- 批准号:
RGPIN-2014-05721 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Larg-Scale Data Analytics: Methodologies and Applications
大规模数据分析:方法和应用
- 批准号:
RGPIN-2014-05721 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Larg-Scale Data Analytics: Methodologies and Applications
大规模数据分析:方法和应用
- 批准号:
RGPIN-2014-05721 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于Deep Unrolling的高分辨近红外二区荧光分子断层成像方法研究
- 批准号:12271434
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
基于深度森林(Deep Forest)模型的表面增强拉曼光谱分析方法研究
- 批准号:2020A151501709
- 批准年份:2020
- 资助金额:10.0 万元
- 项目类别:省市级项目
面向Deep Web的数据整合关键技术研究
- 批准号:61872168
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于语义计算的海量Deep Web知识探索机制研究
- 批准号:61272411
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
Deep Web数据集成查询结果抽取与整合关键技术研究
- 批准号:61100167
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
面向Deep Web的大规模知识库自动构建方法研究
- 批准号:61170020
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
Deep Web敏感聚合信息保护方法研究
- 批准号:61003054
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于逻辑强化学习的Deep Web模式匹配研究
- 批准号:61070122
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
New approaches to training deep probabilistic models
训练深度概率模型的新方法
- 批准号:
2613115 - 财政年份:2025
- 资助金额:
$ 1.68万 - 项目类别:
Studentship
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
- 批准号:
2338512 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Deep Learningを活用した超音波ガイドによる安全な静脈穿刺法の開発
利用深度学习的超声引导开发安全静脉穿刺方法
- 批准号:
24K13362 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333102 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
MFB: Better Homologous Folding using Computational Linguistics and Deep Learning
MFB:使用计算语言学和深度学习更好的同源折叠
- 批准号:
2330737 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
Deep imaging for understanding molecular processes in complex organisms
深度成像用于了解复杂生物体的分子过程
- 批准号:
LE240100091 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities














{{item.name}}会员




