Deep Learning for Vision-based Measurement
基于视觉的测量的深度学习
基本信息
- 批准号:RGPIN-2018-04405
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Deep learning techniques are remarkably successful on detection and recognition tasks in computer vision, reaching better than human performance in some specific applications. In my research I will develop novel learning-based algorithms and methods for virtual reality where data driven interaction and environment modelling, as well as user interfaces, can significantly benefit from advances in computer vision. Visual tracking allows different virtual reality and augmented reality devices to remain registered and synchronized. Motion estimation of surfaces, objects and actors is crucial in motion capture and 3D interaction modelling. Multi-view stereo captures real-word environments enabling navigation through these environment based on geometric relationships. My research program will significantly improve visual tracking, motion and stereo algorithms with learning-based techniques by focusing on vision based measurement. Vision based measurement uses the camera as a measurement instrument to obtain a measurand through an associated measurement procedure and with an uncertainty. This is crucial but often overlooked in virtual and augmented reality where different sensors and sensing results need to be fused with each other but also combined with physical reality. The geometry but also the appearance of captured objects and characters must not only appear realistic on their own but also when integrated into the whole virtual or augmented reality. In my research program, I will develop methods that on the one hand use physical constraints on the learning and on the other hand use learning to obtain physically plausible models. I will work on making consistent long-term tracking possible, develop real-time learning methods for motion estimation and 3D capture, thereby advancing the state-of-the-art in virtual and augmented reality through a focus on vision based measurement.
深度学习技术在计算机视觉的检测和识别任务上非常成功,在某些特定应用中达到了比人类更好的表现。在我的研究中,我将为虚拟现实开发新的基于学习的算法和方法,其中数据驱动的交互和环境建模以及用户界面可以从计算机视觉的进步中显著受益。视觉跟踪允许不同的虚拟现实和增强现实设备保持注册和同步。表面、物体和演员的运动估计在运动捕捉和3D交互建模中至关重要。多视图立体捕捉真实世界的环境,使导航通过这些环境基于几何关系。我的研究项目将通过专注于基于视觉的测量,显著改进基于学习的视觉跟踪、运动和立体算法。基于视觉的测量使用相机作为测量仪器,通过相关的测量程序和不确定度来获得测量值。这一点至关重要,但在虚拟现实和增强现实中经常被忽视,因为不同的传感器和传感结果需要相互融合,但也需要与物理现实相结合。捕捉到的物体和人物的几何形状和外观不仅要表现得真实,而且要融入整个虚拟或增强现实。在我的研究计划中,我将开发一种方法,一方面在学习中使用物理约束,另一方面使用学习来获得物理上可信的模型。我将致力于使一致的长期跟踪成为可能,为运动估计和3D捕获开发实时学习方法,从而通过专注于基于视觉的测量来推进虚拟和增强现实的最新技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lang, Jochen其他文献
The glutamate receptor GluK2 contributes to the regulation of glucose homeostasis and its deterioration during aging
- DOI:
10.1016/j.molmet.2019.09.011 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:8.1
- 作者:
Abarkan, Myriam;Gaitan, Julien;Lang, Jochen - 通讯作者:
Lang, Jochen
Cysteine-string protein isoform beta (Cspβ) is targeted to the trans-Golgi network as a non-palmitoylated CSP in clonal β-cells
- DOI:
10.1016/j.bbamcr.2006.08.054 - 发表时间:
2007-02-01 - 期刊:
- 影响因子:5.1
- 作者:
Boal, Frederic;Le Pevelen, Severine;Lang, Jochen - 通讯作者:
Lang, Jochen
Biosensors in Diabetes
- DOI:
10.1109/mpul.2014.2309577 - 发表时间:
2014-05-01 - 期刊:
- 影响因子:0.6
- 作者:
Renaud, Sylvie;Catargi, Bogdan;Lang, Jochen - 通讯作者:
Lang, Jochen
Slow potentials encode intercellular coupling and insulin demand in pancreatic beta cells
- DOI:
10.1007/s00125-015-3558-z - 发表时间:
2015-06-01 - 期刊:
- 影响因子:8.2
- 作者:
Lebreton, Fanny;Pirog, Antoine;Lang, Jochen - 通讯作者:
Lang, Jochen
Multilevel control of glucose homeostasis by adenylyl cyclase 8
- DOI:
10.1007/s00125-014-3445-z - 发表时间:
2015-04-01 - 期刊:
- 影响因子:8.2
- 作者:
Raoux, Matthieu;Vacher, Pierre;Lang, Jochen - 通讯作者:
Lang, Jochen
Lang, Jochen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lang, Jochen', 18)}}的其他基金
Deep Learning for Vision-based Measurement
基于视觉的测量的深度学习
- 批准号:
RGPIN-2018-04405 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Deep Learning for Vision-based Measurement
基于视觉的测量的深度学习
- 批准号:
RGPIN-2018-04405 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Deep Learning for Vision-based Measurement
基于视觉的测量的深度学习
- 批准号:
RGPIN-2018-04405 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Deep Learning for Vision-based Measurement
基于视觉的测量的深度学习
- 批准号:
RGPIN-2018-04405 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Six Degrees-of-freedom Virtual Reality for Live Events
适用于现场活动的六自由度虚拟现实
- 批准号:
514599-2017 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
Computational Photography for Capturing Virtual Environments
用于捕捉虚拟环境的计算摄影
- 批准号:
311873-2013 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Computational Photography for Capturing Virtual Environments
用于捕捉虚拟环境的计算摄影
- 批准号:
311873-2013 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Computational Photography for Capturing Virtual Environments
用于捕捉虚拟环境的计算摄影
- 批准号:
311873-2013 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Scene capture for next generation virtual reality
下一代虚拟现实的场景捕捉
- 批准号:
491365-2015 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
Computational Photography for Capturing Virtual Environments
用于捕捉虚拟环境的计算摄影
- 批准号:
311873-2013 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Pig ID: developing a deep learning machine vision system to track pigs using individual biometrics
Pig ID:开发深度学习机器视觉系统,利用个体生物识别技术跟踪猪
- 批准号:
BB/X001385/1 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Research Grant
Pig ID: developing a deep learning machine vision system to track pigs using individual biometrics
Pig ID:开发深度学习机器视觉系统,利用个体生物识别技术跟踪猪
- 批准号:
BB/X001830/1 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Research Grant
Deep Neural Networks with Non-iterative Learning Strategies for Pattern Recognition and Data Agumentation Applicable to Computer Vision and Healthcare
适用于计算机视觉和医疗保健的模式识别和数据论证的具有非迭代学习策略的深度神经网络
- 批准号:
RGPIN-2020-04757 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Deep learning for medical computer vision: Beyond more data and more computing power
医学计算机视觉深度学习:超越更多数据和更强计算能力
- 批准号:
RGPIN-2020-06752 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
PHOENIX: Generative models and Deep Reinforcement Learning for Geospatial Computer Vision
PHOENIX:地理空间计算机视觉的生成模型和深度强化学习
- 批准号:
571887-2021 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Alliance Grants
Computer Vision-Based Deep Learning Algorithms for Detecting Marine Life and Physical Phenomena from Acoustic Backscatter Time Series
基于计算机视觉的深度学习算法,用于从声学反向散射时间序列中检测海洋生物和物理现象
- 批准号:
576751-2022 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Alliance Grants
Deep Learning for Vision-based Measurement
基于视觉的测量的深度学习
- 批准号:
RGPIN-2018-04405 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Deep Learning for Vision-based Measurement
基于视觉的测量的深度学习
- 批准号:
RGPIN-2018-04405 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Deep Learning for Tactile Vision Substitution
用于触觉视觉替代的深度学习
- 批准号:
565454-2021 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Using computer vision and deep learning to measure worker kinematics
使用计算机视觉和深度学习来测量工人运动学
- 批准号:
10214134 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别: